f(x) = 5x is linear. Just a straight line with a slope of +5. So if the intervals are both a difference of 1, then the average rate of change will be the same.
f(x2) - f(x1) over x2 - x1. That's the formula for average rate of change.
So for Section A:
f(x) = 5x, (0,1)
[f(1) - f(0)]/(1-0)
= [5(1) - 5(0)]/1
=(5)/1
=5
Do the same for section B and you'll get 5 as well.
I hope this helps you because I have no clue if my answer is right
What's the question!???????
Consider the top half of a sphere centered at the origin with radius
![r](https://tex.z-dn.net/?f=r)
, which can be described by the equation
![z=\sqrt{r^2-x^2-y^2}](https://tex.z-dn.net/?f=z%3D%5Csqrt%7Br%5E2-x%5E2-y%5E2%7D)
and consider a plane
![z=h](https://tex.z-dn.net/?f=z%3Dh)
with
![0](https://tex.z-dn.net/?f=0%3Ch%3Cr)
. Call the region between the two surfaces
![R](https://tex.z-dn.net/?f=R)
. The volume of
![R](https://tex.z-dn.net/?f=R)
is given by the triple integral
![\displaystyle\iiint_R\mathrm dV=\int_{-\sqrt{r^2-h^2}}^{\sqrt{r^2-h^2}}\int_{-\sqrt{r^2-h^2-x^2}}^{\sqrt{r^2-h^2-x^2}}\int_h^{\sqrt{r^2-x^2-y^2}}\mathrm dz\,\mathrm dy\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciiint_R%5Cmathrm%20dV%3D%5Cint_%7B-%5Csqrt%7Br%5E2-h%5E2%7D%7D%5E%7B%5Csqrt%7Br%5E2-h%5E2%7D%7D%5Cint_%7B-%5Csqrt%7Br%5E2-h%5E2-x%5E2%7D%7D%5E%7B%5Csqrt%7Br%5E2-h%5E2-x%5E2%7D%7D%5Cint_h%5E%7B%5Csqrt%7Br%5E2-x%5E2-y%5E2%7D%7D%5Cmathrm%20dz%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dx)
Converting to polar coordinates will help make this computation easier. Set
![\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\var\phi\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7Dx%3D%5Crho%5Ccos%5Ctheta%5Csin%5Cvarphi%5C%5Cy%3D%5Crho%5Csin%5Ctheta%5Csin%5Cvarphi%5C%5Cz%3D%5Crho%5Ccos%5Cvar%5Cphi%5Cend%7Bcases%7D%5Cimplies%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%5C%2C%5Cmathrm%20dz%3D%5Crho%5E2%5Csin%5Cvarphi%5C%2C%5Cmathrm%20d%5Crho%5C%2C%5Cmathrm%20d%5Ctheta%5C%2C%5Cmathrm%20d%5Cvarphi)
Now, the volume can be computed with the integral
![\displaystyle\iiint_R\mathrm dV=\int_0^{2\pi}\int_0^{\arctan\frac{\sqrt{r^2-h^2}}h}\int_{h\sec\varphi}^r\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciiint_R%5Cmathrm%20dV%3D%5Cint_0%5E%7B2%5Cpi%7D%5Cint_0%5E%7B%5Carctan%5Cfrac%7B%5Csqrt%7Br%5E2-h%5E2%7D%7Dh%7D%5Cint_%7Bh%5Csec%5Cvarphi%7D%5Er%5Crho%5E2%5Csin%5Cvarphi%5C%2C%5Cmathrm%20d%5Crho%5C%2C%5Cmathrm%20d%5Cvarphi%5C%2C%5Cmathrm%20d%5Ctheta)
You should get
Answer:
Step-by-step explanation:
1/4/3=1/4*1/3=1/12
Answer:
Therefore, amount of tax is $65.
Step-by-step explanation:
Amount of tax = Tax% of $1300
Amount of tax = 5% of $1300
= (5/100) of $1300
= (1/20) of $1300
= $130/2
= $65