Answer: the coefficient of volume expansion of glass = 0.86/(1000 * 52) = 0.00001654 per degree.
Explanation:
Original volume of mercury = 1000 cm3.
The final volume of mercury considering its volume expansion quotient = 1000 + 1000*(1.8*10^-4 *52) = 1000 + 9.36 = 1009.36 cm^3
Considering the glass as a non expanding substance, the complete excess volume of 9.36 cm3 of mercury should have overflown the container, but due to the expansion of glass, the capacity of mercury containment increases and so a lesser amount of mercury flows out.
The amount of mercury that actually flowed out = 8.50 cm3.
So, the expansion of the glass container = 9.36-8.50 = 0.86 cm3.
Using the formula for coefficient of expansion,
coefficient of volume expansion of glass = 0.86/(1000 * 52) = 0.00001654 per degree.
Right answer is B . Trust me .
<h2>Answer:</h2>
B) endothermic reaction.
<h2>Explanation:</h2>
Melting of ice is endothermic because it is taking heat from the environment, feeling cold, because it requires energy to break the ice bonds. It's also why you feel cold when wet it takes energy to evaporate water. The ice absorbs the energy from the environment. Its internal potential energy increases, therefore, it's endothermic. It also increases the entropy of reaction.
Answer:
Breaks down and absorbs nutrients from the food and liquids you consume to use for important things like energy, growth and repairing cells.
Answer:
3.75 L
Explanation:
We can solve this problem by using <em>Charles' law</em>, which states:
Where subscript 1 stands for initial volume and temperature and subscript 2 for final volume and temperature, meaning that in this case:
We <u>input the data</u>:
- 2.5 L * 300 K = V₂ * 200 K
And <u>solve for V₂</u>: