1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kaylis [27]
3 years ago
8

In which situation is the speed of the car constant while its velocity is changing?

Chemistry
1 answer:
Dima020 [189]3 years ago
3 0
When you change direction while maintaining the same speed, you'll change the velocity. 
You might be interested in
How do you solve questions 6 and 7
bearhunter [10]

I know the answer to your question but if you want me to answer this question first, I need your help with my question "How do I solve number 12? Quick please I need help ASAP!!!"

6 0
3 years ago
The metabolic oxidation of glucose, C6H12O6, in our bodies produces CO2, which is expelled from our lungs as a gas.
enot [183]

Answer:

\large \boxed{\text{21.6 L}}

Explanation:

We must do the conversions

mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂

We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.

Mᵣ:        180.16

         C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O

m/g:      24.5

(a) Moles of C₆H₁₂O₆

\text{Moles of C$_{6}$H$_{12}$O}_{6} = \text{24.5 g C$_{6}$H$_{12}$O}_{6}\times \dfrac{\text{1 mol C$_{6}$H$_{12}$O}_{6}}{\text{180.16 g C$_{6}$H$_{12}$O}_{6}}\\\\= \text{0.1360 mol C$_{6}$H$_{12}$O}_{6}

(b) Moles of CO₂

\text{Moles of CO}_{2} =\text{0.1360 mol C$_{6}$H$_{12}$O}_{6} \times \dfrac{\text{6 mol CO}_{2}}{\text{1 mol C$_{6}$H$_{12}$O}_{6}} = \text{0.8159 mol CO}_{2}

(c) Volume of CO₂

We can use the Ideal Gas Law.

pV = nRT

Data:

p = 0.960 atm

n = 0.8159 mol

T = 37  °C

(i) Convert the temperature to kelvins

T = (37 + 273.15) K= 310.15 K

(ii) Calculate the volume

\begin{array}{rcl}pV &=& nRT\\\text{0.960 atm} \times V & = & \text{0.8159 mol} \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1} \times \text{310.15 K}\\0.960V & = & \text{20.77 L}\\V & = & \textbf{21.6 L} \\\end{array}\\\text{The volume of carbon dioxide is $\large \boxed{\textbf{21.6 L}}$}

7 0
3 years ago
i am begging anyone to help me with this! (all tutors i've asked said they can't solve it but i need someone to help me out) - i
9966 [12]

First, we need to calculate how much energy we will get from this combustion.

Assuming the combustion is complete, we have the octane reacting with O₂ to form only water and CO₂, so:

C_8H_{18}+O_2\to CO_2+H_2O

We need to balance the reaction. Carbon only appear on two parts, so, we can start by it:

C_8H_{18}+O_2\to8CO_2+H_2O

Now, we balance the hydrogen:

C_8H_{18}+O_2\to8CO_2+9H_2O

And in the end, the oxygen:

C_8H_{18}+\frac{25}{2}O_2\to8CO_2+9H_2O

We can multiply all coefficients by 2 to get integer ones:

2C_8H_{18}+25O_2\to16CO_2+18H_2O

Now, we need to use the enthalpies of formation to get the enthalpy of reaction of this reaction.

The enthalpy of reaction can be calculated by adding the enthalpies of formation of the products multiplied by their stoichiometric coefficients and substracting the sum of enthalpies of formation of the reactants multiplied by their stoichiometric coefficients.

For the reactants, we have (the enthalpy of formation of pure compounds is zero, which is the case for O₂):

\begin{gathered} \Delta H\mleft\lbrace reactants\mright\rbrace=2\cdot\Delta H\mleft\lbrace C_8H_{18}\mright\rbrace+25\cdot\Delta H\mleft\lbrace O_2\mright\rbrace \\ \Delta H\lbrace reactants\rbrace=2\cdot(-250.1kJ)+25\cdot0kJ \\ \Delta H\lbrace reactants\rbrace=-500.2kJ+0kJ \\ \Delta H\lbrace reactants\rbrace=-500.2kJ \end{gathered}

For the products, we have:

\begin{gathered} \Delta H_{}\mleft\lbrace product\mright\rbrace=16\cdot\Delta H\lbrace CO_2\rbrace+18\cdot\Delta H\lbrace H_2O\rbrace \\ \Delta H_{}\lbrace product\rbrace=16\cdot(-393.5kJ)+18\cdot(-285.5kJ) \\ \Delta H_{}\lbrace product\rbrace=-6296kJ-5139kJ \\ \Delta H_{}\lbrace product\rbrace=-11435kJ \end{gathered}

Now, we substract the rectants from the produtcs:

\begin{gathered} \Delta H_r=\Delta H_{}\lbrace product\rbrace-\Delta H\lbrace reactants\rbrace \\ \Delta H_r=-11435kJ-(-500.2kJ) \\ \Delta H_r=-10934.8kJ \end{gathered}

Now, this enthalpy of reaction is for 2 moles of C₈H₁₈, so for 1 mol of C₈H₁₈ we have half this value:

\Delta H_c=\frac{1}{2}\Delta H_r=\frac{1}{2}\cdot(-10934.8kJ)=-5467.4kJ

Now, we have 100 g of C₈H₁₈, and its molar weight is approximately 114.22852 g/mol, so the number of moles in 100 g of C₈H₁₈ is:

\begin{gathered} M_{C_8H_{18}}=\frac{m_{C_8H_{18}}}{n_{C_8H_{18}}} \\ n_{C_8H_{18}}=\frac{m_{C_8H_{18}}}{M_{C_8H_{18}}}=\frac{100g}{114.22852g/mol}\approx0.875438mol \end{gathered}

Since we have approximately 0.875438 mol, and 1 mol releases -5467.4kJ when combusted, we have:

Q=-5467.4kJ/mol\cdot0.875438mol\approx-4786.37kJ

Now, for the other part, we need to calculate how much heat it is necessary to melt a mass, <em>m</em>.

First, we have to heat the ice to 0 °C, so:

\begin{gathered} Q_1=m\cdot2.010J/g.\degree C\cdot(0-(-10))\degree C \\ Q_1=m\cdot2.010J/g\cdot10 \\ Q_1=m\cdot20.10J/g \end{gathered}

Then, we need to melt all this mass, so we use the latent heat now:

Q_2=n\cdot6.03kJ/mol

Converting mass to number of moles of water we have:

\begin{gathered} M=\frac{m}{n} \\ n=\frac{m}{M}=\frac{m}{18.01528g/mol} \end{gathered}

So:

Q_2=\frac{m}{18.01528g/mol}_{}\cdot6.03kJ/mol\approx m\cdot0.334716kJ/g

Adding them, we have a total heat of:

\begin{gathered} Q_T=m\cdot20.10J/g+m\cdot0.334716kJ/g \\ Q_T=m\cdot0.02010kJ/g+m\cdot0.334716kJ/g \\ Q_T=m\cdot0.354816kJ/g \end{gathered}

Since we have a heat of 4786.37 kJ form the combustion, we input that to get the mass (the negative sign is removed because it only means that the heat is released from the reaction, but now it is absorbed by the ice):

\begin{gathered} 4786.37kJ=m\cdot0.354816kJ/g \\ m=\frac{4786.37kJ}{0.354816kJ/g}\approx13489g\approx13.5\operatorname{kg} \end{gathered}

Since we have a total of 20kg of ice, we can clculate the percent using it:

P=\frac{13.5\operatorname{kg}}{20\operatorname{kg}}=0.675=67.5\%

5 0
1 year ago
What is a potential benefit of fuel cell cars?
77julia77 [94]

Answer:

no recharging necessary

3 0
3 years ago
Read 2 more answers
What sample size (grams) of Na3PO4 (FW 164.00) known to be 50.00% pure should be used to consume exactly 40.00 mL of 0.1000 M HC
Mkey [24]

Answer:

0.109 g.

Explanation:

Equation of the reaction:

Na3PO4 + 3HCl --> 3NaCl + H3PO4

Number of moles of HCl = molar concentration × volume

= 0.1 × 0.04

= 0.004 mol.

By stoichiometry, 1 mole of Na3PO4 neutralises 3 moles of HCl. Therefore, number of moles of Na3PO4 = 0.004/3

= 0.0013 mol

Mass of Na3PO4 = molar mass × number of moles

= 0.0013 × 164

= 0.219 g

Since 50% of Na3PO4 was present in the sample. Let 100 g be the total mass of the substance

= 0.219 × 50 g/100 g

= 0.109 g.

3 0
3 years ago
Other questions:
  • Human fat has a density of 0.918 g/cm^3. How much volume (in cm^3) is gained by a person who gains 10.1 lbs of pure fat?
    13·1 answer
  • Is the lithosphere a solid rock or a liquid rock
    15·1 answer
  • What was the Kevin temperature of the flubber when it was first discovered?
    12·1 answer
  • CAN SOMEONE HELP ME WITH THIS‼️‼️‼️‼️I WILL ADD YOU AS A FRIEND AND BRAINLIEST ‼️‼️‼️‼️
    8·1 answer
  • What will happen to the density of a substance if it contracts when it freezes?
    8·1 answer
  • 3. After the isotope decays, what is the nucleus called?||
    14·1 answer
  • Which of the following is not a pseudoscientific claim
    8·1 answer
  • SOMEONE HELP ASAPP...
    12·2 answers
  • Can you help me with this
    13·1 answer
  • Describe how the mass spectrometry readout is consistent with the chemical structure of hydrochloric acid.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!