<span> a mode of natural </span>selection<span> in which an extreme phenotype is favored over other phenotypes, causing frequency to shift over time in the direction of that phenotype.</span>
The plant would shrivel up and die. The central vacuole holds water maintaining turgor pressure in the plant, and without the vacuole, the plant would shrivel.
We know, U = m * g * h
So, seema needs the value of g & h
In short, Your Answer would be Option C) <span>acceleration due to gravity and the height the ball reaches
Hope this helps!</span>
The first geneticist has identified an obese allele that he or she believes to be recessive. We will define his or her allele as o1 and the normal allele as O1. The obese allele appears to be recessive based on the series of crosses he or she performed.
Cross 1 with possible genotype:
Obese (o1o1) × Normal (O1O1) F1 All normal (O1o1)
Cross 2 with possible genotypes:
F1 normal (Oo1) × F1 normal (O1o1) F2 8 normal (O1O1 and O1o1)
2 obese (o1o1)
Cross 3 with possible genotypes:
Obese (o1o1) × Obese (o1o1) All Obese (o1o1)
A second geneticist also finds an obese mouse in her colony and performs the same types of crosses, which indicate to her that the obese allele is recessive. We will define her obese allele as o2 and the normal allele as O2.
The cross of obese mice between the two different laboratories produced only normal mice. These different alleles are both recessive. However, they are located at different gene loci. Essentially, the obese mice from the different labs have separate obesity genes that are independent of one another.
The likely genotypes of the obese mice are as follows:
Obese mouse 1 (o1o1O2O2) × Obese mouse 2 (O1O1o2o2)
F1 All normal (O1o1O2o2)