Uh i think it is a balance combustion reaction not entirely sure tho
Answer:
You must add 48.97 mL of water to make the 0.200 M diluted solution.
Explanation:
In chemistry, dilution is the reduction in concentration of a chemical in a solution. In other words, it is the process of reducing the concentration of solute in solution, simply adding more solvent to the solution.
In a dilution, the quantity or mass of the solute is not changed but only that of the solvent. As only solvent is being added, by not increasing the amount of solute the concentration of the solute decreases.
The expression for the dilution calculations is:
Cinitial* Vinitial = Cfinal* Vfinal
In this case:
- Cinitial= 12 M
- Vinitial= 0.830 mL
- Cfinal= 0.200 M
- Vfinal= ?
Replacing:
12 M*0.830 mL= 0.200 M*Vfinal
Solving:

Vfinal= 49.8 mL
Since 0.830 mL is the volume you initially have of HCl, the amount of water you must add is:
49.8 mL - 0.830 mL= 48.97 mL
<u><em>You must add 48.97 mL of water to make the 0.200 M diluted solution.</em></u>
Answer:
-800 kJ/mol
Explanation:
To solve the problem, we have to express the enthalpy of combustion (ΔHc) in kJ per mole (kJ/mol).
First, we have to calculate the moles of methane (CH₄) there are in 2.50 g of substance. For this, we divide the mass into the molecular weight Mw) of CH₄:
Mw(CH₄) = 12 g/mol C + (1 g/mol H x 4) = 16 g/mol
moles CH₄ = mass CH₄/Mw(CH₄)= 2.50 g/(16 g/mol) = 0.15625 mol CH₄
Now, we divide the heat released into the moles of CH₄ to obtain the enthalpy per mole of CH₄:
ΔHc = heat/mol CH₄ = 125 kJ/(0.15625 mol) = 800 kJ/mol
Therefore, the enthalpy of combustion of methane is -800 kJ/mol (the minus sign indicated that the heat is released).
Robert Hooke deterred that all animals were made of cells
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.