Answer:
λ = 5.65m
Explanation:
The Path Difference Condition is given as:
δ=
;
where lamda is represent by the symbol (λ) and is the wavelength we are meant to calculate.
m = no of openings which is 2
∴δ= 
n is the index of refraction of the medium in which the wave is traveling
To find δ we have;
δ= 
δ= 
δ= 
δ= 
δ= 
δ= 
δ= 82.15 -73.68
δ= 8.47
Again remember; to calculate the wavelength of the ocean waves; we have:
δ= 
δ= 8.47
8.47 = 
λ = 
λ = 5.65m
The difference between the above velocities is that they exist in opposite direction of each other. or it can be said that they are negative vectors of each other.
Ridges, mountains, and volcanoes!
Answer:
All the given options will result in an induced emf in the loop.
Explanation:
The induced emf in a conductor is directly proportional to the rate of change of flux.

where;
A is the area of the loop
B is the strength of the magnetic field
θ is the angle between the loop and the magnetic field
<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.
<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.
Option C has a similar effect with option A, thus both will result in an induced emf.
Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.
Therefore, all the given options will result in an induced emf in the loop.
Force of gravity. Hope this is correct good luck!!