Given:
u = 10⁵ m/s, the entrance velocity
v = 2.5 x 10⁶ m/s, the exit velocity
s = 1.6 cm = 0.016 m, distance traveled
Let a = the acceleration.
Then
u² + 2as = v²
(10⁵ m/s)² + 2*(a m/s²)*(0.016 m) = (2.5 x 10⁶ m/s)²
0.032a = 6.25 x 10¹² - 10¹⁰ = 6.24 x 10¹²
a = 1.95 x 10¹⁴ m/s²
Answer: 1.95 x 10¹⁴ m/s²
That equation is Newton's universal law of gravitation. ... Any two masses exert equal-and-opposite gravitational forces on each other. If we drop a ball, the Earth exerts a gravitational force on the ball, but the ball exerts a gravitational force of the same magnitude (and in the opposite direction) on the Earth.
The wolf population in that area has reached its carrying capacity.
There are two force acting on an object that is being lifted. (1) the weight of the car, (2) the upward force. The difference of these force should be equal to the product of the mass and the acceleration. (This is the content of Newton's 2nd Law of Motion). If we let the lifting force be F,
F - (830)(9.8) = (830)(3.8)
The value of F from the equation is 11288 N.
Answer: 8*10^-15 N
Explanation: In order to calculate the force applied on an electron in the middle of the two planes at 500 V we know that, F=q*E
The electric field between the plates is given by:
E = ΔV/d = 500 V/0.01 m=5*10^3 N/C
the force applied to the electron is: F=e*E=8*10^-15 N