First choice: the inability of current technology to capture
large amounts of the
Sun's energy
Well, it's true that large amounts of it get away ... our 'efficiency' at capturing it is still rather low. But the amount of free energy we're able to capture is still huge and significant, so this isn't really a major problem.
Second choice: the inability of current technology to store
captured solar
energy
No. We're pretty good at building batteries to store small amounts, or raising water to store large amounts. Storage could be better and cheaper than it is, but we can store huge amounts of captured solar energy right now, so this isn't a major problem either.
Third choice: inconsistencies in the availability of the resource
I think this is it. If we come to depend on solar energy, then we're
expectedly out of luck at night, and we may unexpectedly be out
of luck during long periods of overcast skies.
Fourth choice: lack of
demand for solar energy
If there is a lack of demand, it's purely a result of willful manipulation
of the market by those whose interests are hurt by solar energy.
Answer:
The velocity is 
Henrietta is at distance
from the under the window
Explanation:
From the question we are told that
The speed of Henrietta is 
The height of the window from the ground is 
Generally the time taken for the lunch to reach the ground assuming it fell directly under the window is

=>
=>
Generally the time taken for the lunch to reach Henrietta is mathematically represented as

Here
is the time duration that elapsed after Henrietta has passed below the window the value is given as 4 s
Now
=>
Generally the distance covered by Henrietta before catching her lunch is

=> 
=> 
Generally the speed with which Bruce threw her lunch is mathematically represented as


D. A solution because it dissolves when mixed with water
Information travels along the axon once an impulse is received. The axon then takes it to the place where it can be sent off to another neuron
<span>dendrite → cell body → axon → axon terminals is the correct answer</span>
<span>If I managed to help you, please make sure to mark my answer as the "Brainliest" answer. Thanks! :)</span>
Answer:
Explanation:
A mass of 700 kg will exert a force of
700 x 9.8
= 6860 N.
Amount of compression x = 4 cm
= 4 x 10⁻² m
Force constant K = force of compression / compression
= 6860 / 4 x 10⁻²
= 1715 x 10² Nm⁻¹.
Let us take compression of r at any moment
Restoring force by spring
= k r
Force required to compress = kr
Let it is compressed by small length dr during which force will remain constant.
Work done
dW = Force x displacement
= -kr -dr
= kr dr
Work done to compress by length d
for it r ranges from 0 to -d
Integrating on both sides
W = 
= [ kr²/2]₀^-4
= 1/2 kX16X10⁻⁴
= .5 x 1715 x 10² x 16 x 10⁻⁴
= 137.20 J