Answer:
12 ohms
Explanation:
Ohm's Law tells the relationship between voltage, current, and resistance.
It can be written in three different ways, depending on which ones you know,
and which one you want to find.
Here's the one we need:
Resistance = (voltage) divided by (current)
= (120 V) / (10 Amp)
= 12 ohms .
Explanation:
Acceleration of an object is calculated by finding the change in its velocity divided by time taken.
If
is initial velocity,
is final velocity and t is time taken. Then the acceleration of the object is given by :
.....(1)
So, the above equation is used to find acceleration. It is called the first equation of motion. After rearranging equation (1), the correct options are :




Answer:
c. 1600J
Explanation:
The loss in potential energy of the boy is given by:

where
m = 40 kg is the mass of the boy
g = 9.8 m/s^2 is the acceleration of gravity
is the total change in the height of the boy (4 metres + 2 cm due to the compression of the spring)
Substituting, we find

Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°
Answer:
The oscillation frequency of the spring is 1.66 Hz.
Explanation:
Let m is the mass of the object that is suspended vertically from a support. The potential energy stored in the spring is given by :

k is the spring constant
x is the distance to the lowest point form the initial position.
When the object reaches the highest point, the stored potential energy stored in the spring gets converted to the potential energy.

Equating these two energies,

.............(1)
The expression for the oscillation frequency is given by :

(from equation (1))

f = 1.66 Hz
So, the oscillation frequency of the spring is 1.66 Hz. Hence, this is the required solution.