Dddddddddddddddddddddddddddddddddddddddddddddddddddddd
The acceleration of the car would be 0.33 first and then it would be 0.17.
<u>Explanation:</u>
An applied force is a force that is applied to an object by an individual or another item. On the off chance that an individual is pushing a work area over the room, at that point there is an applied power following up on the article. The applied power is the power applied on the work area by the individual.
The net force applied to the object rises to the mass of the article increased by the measure of its acceleration. The net power following up on the soccer ball is equivalent to the mass of the soccer ball duplicated by its adjustment in speed each second (its acceleration).
The values of t are <u>4.643 second</u> for the function 
What is batter misses?
An out in baseball happens when the umpire declares a batter or baserunner out. A hitter or runner who is out is no longer able to score runs and must go back to the dugout until their subsequent turn at bat. The batting team's turn is over after three outs are recorded in a half-inning.
In order to signal an out, umpires typically make a fist with one hand and then flex that arm, either upward on pop flies or forward on regular plays at first base. To indicate a called strikeout, home plate umpires frequently use a "punch-out" action.When a batter is struck by a pitched ball without making a swing at it, it is referred to as a hit-by-pitch. He consequently gets first base.
We have been given that
s = 6 feet
v = 73 feet per second
Substituting these values in the formula 

When the ball hits the ground, the height becomes zero. Thus, H(t)=0

We solve the equation using quadratic formula 
Substituting the values a=-16, b= 73, c=6

Learn more about the batter misses with the help of the given link:
brainly.com/question/19475098
#SPJ4
Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s
I believe the answer should be D