The other 4 kg of mass may have departed the scene
of the fire, in the form of gases and smoke particles.
Answer:
The outline of the energy transfer are;
a) Kinetic energy → Clockwork spring → Potential energy
b) Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Please find attached the drawings of the energy transfer created with MS Visio
Explanation:
The energy transfer diagrams are diagrams that can be used to indicate the part of a system where energy is stored and the form and location to which the energy is transferred
a) The energy transfer diagram for the winding up a clockwork car is given as follows;
Mechanical kinetic energy is used to wind up (turn) the clockwork car such that the kinetic energy is transformed into potential energy and stored in the wound up clockwork as follows;
Kinetic energy → Clockwork spring → Potential energy
b) Letting a wound up clockwork car run results in the conversion of mechanical potential energy into kinetic (energy due tom motion) energy as follows;
Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) The energy stored in the battery of a battery powered car is chemical potential energy. When the battery powered car runs, the chemical potential energy produces an electromotive force which is converted into kinetic energy as electric current flows from the batteries
Therefore, we have;
Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Answer:
The period saw major technological advances, including the adoption of gunpowder, the invention of vertical windmills, spectacles, mechanical clocks, and greatly improved water mills, building techniques (Gothic architecture, medieval castles), and agriculture in general (three-field crop rotation).
Explanation:
Hope this helps :)
Answer:
a) (0, -33, 12)
b) area of the triangle : 17.55 units of area
Explanation:
<h2>
a) </h2>
We know that the cross product of linearly independent vectors
and
gives us a nonzero, orthogonal to both, vector. So, if we can find two linearly independent vectors on the plane through the points P, Q, and R, we can use the cross product to obtain the answer to point a.
Luckily for us, we know that vectors
and
are living in the plane through the points P, Q, and R, and are linearly independent.
We know that they are linearly independent, cause to have one, and only one, plane through points P Q and R, this points must be linearly independent (as the dimension of a plane subspace is 3).
If they weren't linearly independent, we will obtain vector zero as the result of the cross product.
So, for our problem:







<h2>B)</h2>
We know that
and
are two sides of the triangle, and we also know that we can use the magnitude of the cross product to find the area of the triangle:

so:




Answer:
2.5
Explanation:
The capacitance of a parallel-plate capacitor filled with dielectric is given by

where
k is the dielectric constant
is the capacitance of the capacitor without dielectric
In this problem,
is the capacitance of the capacitor in air
is the capacitance with the dielectric inserted
Solving the equation for k, we find
