Answer:
The total energy, i.e. sum of kinetic and potential energy, is constant.
i.e. E = KE + PE
Initially, PE = 0 and KE = 1/2 mv^2
At maximum height, velocity=0, thus, KE = 0 and PE = mgh
Since, total energy is constant (KE converts to PE when the ball is rising),
therefore, KE = PE
or, 1/2 mv^2 = mgh
or, h = v^2 /2g = 13^2 / (2x9.8) = 8.622 m
Hope this helps.
A nuclear reaction in which a heavy nuclear splits spontaneously or on impact with another particle with the release of energy- fission
A nuclear reaction in which atomic nucleus with the release of energy-fusion
The energy harnessed in nuclei is released in nuclear reaction. Fission is the splitting of a heavy nucleus into lighter nuclei and fusion is the combining of nuclei to form a bigger and heavier nucleus
Answer:
The answer to your question is 0.54M
Explanation:
Data
Final concentration = ?
Concentration 1 = 0.850 M
Volume 1 = 249 ml = 0.249 l
Concentration 2 = 0.420 M
Volume 2 = 0.667 M
Process
1.- Calculate the number of moles in both solutions
Number of moles 1 = Molarity 1 x Volume 1
= 0.850 x 0.249
= 0.212
Number of moles 2 = Molarity 2 x Volume 2
= 0.420 x 0.667
= 0.280
Total number of moles = 0.212 + 0.280
= 0.492
2.-Calculate the final volume
Final volume = Volume 1 + Volume 2
Final volume = 0.249 + 0.667
= 0.916 l
3.- Calculate Molarity
Molarity = 0.492 / 0.916
Molarity = 0.54
(a) Pushing the spring down gives it stored mechanical energy that turns into motion
Explanation:
Pushing on the spring causes the mechanical energy, of pushing on the spring, to be stored in the spring through potential elastic energy. Due to the elasticity of the spring, when the spring is released and resumes its initial shape the stored energy is released and can be used to do work such as motion.