The correct answer to the question is A) Electrons.
EXPLANATION:
The electrical conductivity of a metal or any substance depends on the free electron concentration of the metals.
Free electrons are those electrons which are present in the conduction band of the metals. These electrons experience less amount of force attraction from the nucleus. Protons and neutrons do not contribute anything to the current conduction in a metal.These sub atomic particles are bound to the nuclei of atoms.
When we maintain potential difference across the two ends of a conductor, the free electrons are drifted towards the positive terminal of the battery.
Hence, electrical conductivity of a substance is the ability of the electrons to move inside the substance.
More is the conductivity of the substance, the lesser is the resistance to the flow of electrons inside the substance, and vice versa.
Answer:

Explanation:
The expression which represent the first diffraction minima by a circular aperture is given by
--------eqn 1
The angle through which the first minima is diffracted is given by
---------eqn 2
As
is very small so we can write 
So from eqn 1 and eqn 2 we can write
--------eqn 3
Here
is the position of first maxima D is the distance of screen from the circular aperture d is the diameter of aperture
It is given that diameter of circular aperture is 14.7 cm so 
Now putting all these value in eqn 3


We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:42.43m/s
Explanation:According to vf=vi+at, we can calculate it since v0 equals to 0. vf=0+9.8m/s^2*4.33s= 42.434m/s
Complete Question
A parallel plate capacitor creates a uniform electric field of 5 x 10^4 N/C and its plates are separated by 2 x 10^{-3}'m. A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed?
Answer:

Explanation:
From the question we are told that:
Electric field 
Distance 
At negative plate
Generally the equation for Velocity is mathematically given by

Therefore



