Answer:
<em>The second particle will move through the field with a radius greater that the radius of the first particle</em>
Explanation:
For a charged particle, the force on the particle is given as

also recall that work is force times the distance traveled
work = F x d
so, the work on the particle = F x d,
where the distance traveled by the particle in one revolution = 
Work on a particle = 2πrF = 
This work is proportional to the energy of the particle.
And the work is also proportional to the radius of travel of the particles.
Since the second particle has a bigger speed v, when compared to the speed of the first particle, then, the the second particle has more energy, and thus will move through the field with a radius greater that the radius of the first particle.
Answer: acceleration is equal to the change in velocity per unit time in seconds.
a= ∆v / t = vf - vi / t
Explanation: change in velocity or ∆v can be expressed as (vf - vi)
Answer:
9375 N
Explanation:
From the question,
Centripetal force (F) = mv²/r.................. Equation 1
Where m = mass of the car, v = velocity of the car, r = radius of the curve.
Given: m = 900 kg, r = 600 m, v = 25 m/s
Substitute these values into equation 1
F = (900×25²)/600
F = 9375 N.
Hence the centripetal force on the car is 9375 N
Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place