Viscosity isT=u(U/y) where T is shear stress & u is velocity and y is thr length
The answer is =2.57
Answer:

Explanation:
Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:

The initial pressure is:

The speed at outlet is:

![v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%28250%5C%2C%5Cfrac%7Bgal%7D%7Bmin%7D%20%29%5Ccdot%20%28%5Cfrac%7B3.785%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%5E%7B3%7D%7D%7B1%5C%2Cgal%7D%20%29%5Ccdot%28%5Cfrac%7B1%5C%2Cmin%7D%7B60%5C%2Cs%7D%20%29%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5B%281.125%5C%2Cin%29%5Ccdot%28%5Cfrac%7B0.0254%5C%2Cm%7D%7B1%5C%2Cin%7D%20%29%5D%5E%7B2%7D%20%7D)

The initial pressure is:


Los MOSFET de potencia son dispositivos de conducción unipolar. En ellos, los niveles de corriente conducida no están asociados al aumento de la concentración de portadores minoritarios, que luego son difíciles de eliminar para que el dispositivo deje de conducir.
1) 
2) 8.418
Explanation:
1)
The two components of the velocity field in x and y for the field in this problem are:


The x-component and y-component of the acceleration field can be found using the following equations:


The derivatives in this problem are:






Substituting, we find:

And

2)
In this part of the problem, we want to find the acceleration at the point
(x,y) = (-1,5)
So we have
x = -1
y = 5
First of all, we substitute these values of x and y into the expression for the components of the acceleration field:

And so we find:

And finally, we find the magnitude of the acceleration simply by applying Pythagorean's theorem:
