1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
14

Technician A says that an A-pillar may be designed to transfer collision energy

Engineering
1 answer:
svetoff [14.1K]3 years ago
7 0
C both A and b cause they are technician both technicians so they both measure out the floor pan reinforcement be designed to transfer collision energy so I say both A and B
You might be interested in
Which explanation best summarizes what went wrong during Paul’s cost analysis?
Valentin [98]

Answer:

wut is it

Explanation:

4 0
2 years ago
Consider a very long rectangular fin attached to a flat surface such that the temperature at the end of the fin is essentially t
zepelin [54]

Answer:

attached below

Explanation:

4 0
4 years ago
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
4 years ago
Read 2 more answers
An ideal gas initially at 300 K and 1 bar undergoes a three-step mechanically reversible cycle in a closed system. In step 12, p
Veseljchak [2.6K]

Answer:

Ts =Ta E)- 300(

569.5 K

5

Q12-W12 = -4014.26

Mol

AU2s = Q23= 5601.55

Mol

AUs¡ = Ws¡ = -5601.55

Explanation:

A clear details for the question is also attached.

(b) The P,V and T for state 1,2 and 3

P =1 bar Ti = 300 K and Vi from ideal gas Vi=

10

24.9x10 m

=

P-5 bar

Due to step 12 is isothermal: T1 = T2= 300 K and

VVi24.9 x 10x-4.9 x 10-3 *

The values at 3 calclated by Uing step 3l Adiabatic process

B-P ()

Since step 23 is Isochoric: Va =Vs= 4.99 m* and 7=

14

Ps-1x(4.99 x 103

P-1x(29x 10)

9.49 barr

And Ts =Ta E)- 300(

569.5 K

5

(c) For step 12: Isothermal, Since AT = 0 then AH12 = AU12 = 0 and

Work done for Isotermal process define as

8.314 x 300 In =4014.26

Wi2= RTi ln

mol

And fromn first law of thermodynamic

AU12= W12 +Q12

Q12-W12 = -4014.26

Mol

F'or step 23 Isochoric: AV = 0 Since volume change is zero W23= 0 and

Alls = Cp(L3-12)=5 x 8.311 (569.5 - 300) = 7812.18-

AU23= C (13-72) =5 x 8.314 (569.3 - 300) = 5601.53

Inol

Now from first law of thermodynamic the Q23

AU2s = Q23= 5601.55

Mol

For step 3-1 Adiabatic: Since in this process no heat transfer occur Q31= 0

and

AH

C,(T -Ts)=x 8.314 (300- 569.5)= -7842.18

mol

AU=C, (T¡-T)= x 8.314 (300

-5601.55

569.5)

mol

Now from first law of thermodynamie the Ws1

J

mol

AUs¡ = Ws¡ = -5601.55

3 0
3 years ago
While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),
MAXImum [283]

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

3 0
3 years ago
Read 2 more answers
Other questions:
  • A corroded metal gusset plate was found on a bridge. It was estimated that the original area of the plate was 750 cm2 and that a
    11·1 answer
  • Who tryna play fortnite with me
    11·2 answers
  • You want to know your grade in Computer Science, so write a program that continuously takes grades between 0 and 100 to standard
    7·1 answer
  • Your manager has asked you to research and recommend a writing guide that examiners in your digital forensics company can use fo
    8·1 answer
  • Define ways in which you would go about networking to explore opportunities in your career field and obtain more information for
    11·1 answer
  • Yes I’m very cool I promise.
    15·1 answer
  • I need help due today please help
    5·1 answer
  • How many millimeters are there in a centimeter?
    10·1 answer
  • Select the correct answer.
    8·1 answer
  • Technician A says that synthetic blend oil has the same service life as that of full synthetic oils. Technician B says that conv
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!