1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
3 years ago
10

Air initially at 120 psia and 500o F is expanded by an adiabatic turbine to 15 psia and 200o F. Assuming air can be treated as a

n ideal gas and has variable specific heat. a) Determine the specific work output of the actual turbine (Btu/lbm). b) Determine the amount of specific entropy generation during the irreversible process (Btu/lbm R). c) Determine the isentropic efficiency of this turbine (%). d) Suppose the turbine now operates as an ideal compressor (reversible and adiabatic) where the initial pressure is 15 psia, the initial temperature is 200 o F, and th

Engineering
1 answer:
Goshia [24]3 years ago
8 0

Answer:

a. Wa = 73.14 Btu/lbm

b. Sgen = 0.05042 Btu/lbm °R

c. Isentropic efficiency is 70.76%

d. Minimum specific work for compressor W = -146.2698 Btu/lbm [It is negative because work is being done on the compressor]

Explanation:

Complete question is as follows;

Air initially at 120 psia and 500oF is expanded by an adiabatic turbine to 15 psia and 200oF. Assuming air can be treated as an ideal gas and has variable specific heat.

a) Determine the specific work output of the actual turbine (Btu/lbm).

b) Determine the amount of specific entropy generation during the irreversible process (Btu/lbm R).

c) Determine the isentropic efficiency of this turbine (%).

d) Suppose the turbine now operates as an ideal compressor (reversible and adiabatic) where the initial pressure is 15 psia, the initial temperature is 200 oF, and the ideal exit state is 120 psia. What is the minimum specific work the compressor will be required to operate (Btu/lbm)?

solution;

Please check attachment for complete solution and step by step explanation

You might be interested in
. Consider the single-engine light plane described in Prob. 2. If the specific fuel consumption is 0.42 lb of fuel per horsepowe
Trava [24]

Answer:

Hence the Range and Endurance of single engine plane is given by

650.644 miles and 5.3528 hrs at standard sea level.

Explanation:

Given :

A single engine light plane with ,

Specific fuel consumption 0.42lb/hr/hp.

Fuel capacity =44 gal.

Gross weight =3400 lb.

To find :

Range and Endurance of the plane.

Solution:

Consider  all standard measures of standard single engine propeller plane

as

Wing span =35.8 fts.

Wing swing area=174 sq ft

parasite drag coefficient  =Cd.o.=0.025

Oswald's eff. factor= 0.8

ρ=0.002377= corresponds to standard sea level constant.

Now

Formula for Range is given by, Breguent formula.

R=(η/c)  *(Cl/Cd)*ln(W1/W0)

here η is Oswald's constant,

Now calculating lift(Cl) and drag coefficient (Cd)

Cl=W/(1/2*ρ*v^2*S)

W=Gross weight

ρ=0.002377

Assume v=200 ft/sec normally,

S=174 Sq .ft.

CI=3400/(1/2*0.002377*200*200*174)

=6800/16543.9

=0.4110

Now calculating drag constant,

AR=(wing span)^2/wing swing area

=(35.8)^2/174

=7.37

Now

Drag Coefficient

Cd=Cd.o.+ (Cl^2)/(pie*e*AR)

=0.025+(0.4110)^2/(3.142*0.8*7.36)

=0.0342

Given that 44 gal fuel capacity and in Aviation weight of fuel is 5.64 lb/gal

hence weight of fuel=W1=3400- (44*5.64)

=3151.84

Now

for specific fuel consumption=0.42  lb/hp/hr

=0.42  lb*(1/550 ft)*(1/3600)sec

=2.12 *10^-7 lb/ft/sec

Now further calculating range

R=(η/c)  *(Cl/Cd)*ln(W1/W0)

={0.8/(2.12*10^-7)}*(0.4110/0.0342)*ln(3151.84/3400)

=0.024908/0.072504

=0.34354*10^7

=3.4353 *10^6 fts.

1mi =5280 ft

=(3.4353/5280)*10^6

=650.644 miles

Now

For Endurance

E=(η/c)*{(Cl^3/2)/Cd}*(2*ρ*S)^1/2*[1/(W1)^1/2  -1/(W0)^1/2].

=(0.8/2.12*10^-7)*{(0.4110^3/2)/0.0342}*(2*0.002377*174)^1/2*[1/(3151.84)^1/2  -1/(3400)^1/2]

=3.7735*10^6*7.7043*0.8272*0.0006629

=0.01927*10^6

=1.927*10^4 sec

here 1hr =3600 sec

E=(1.927/3600)*10^4

=5.3528 hrs

7 0
3 years ago
(a) Determine the dose (in mg/kg-day) for a bioaccumulative chemical with BCF = 103 that is found in water at a concentration of
solmaris [256]

Answer:

0.064 mg/kg/day

6.25% from water, 93.75% from fish

Explanation:

Density of water is 1 kg/L, so the concentration of the chemical in the water is 0.1 mg/kg.

The BCF = 10³, so the concentration of the chemical in the fish is:

10³ = x / (0.1 mg/kg)

x = 100 mg/kg

For 2 L of water and 30 g of fish:

2 kg × 0.1 mg/kg = 0.2 mg

0.030 kg × 100 mg/kg = 3 mg

The total daily intake is 3.2 mg.  Divided by the woman's mass of 50 kg, the dosage is:

(3.2 mg/day) / (50 kg) = 0.064 mg/kg/day

b) The percent from the water is:

0.2 mg / 3.2 mg = 6.25%

And the percent from the fish is:

3 mg / 3.2 mg = 93.75%

3 0
3 years ago
A square loop of wire surrounds a solenoid. The side of the square is 0.1 m, while the radius of the solenoid is 0.025 m. The sq
Semmy [17]

Answer:

I=9.6×e^{-8}  A

Explanation:

The magnetic field inside the solenoid.

B=I*500*muy0/0.3=2.1×e ^-3×I.

so the total flux go through the square loop.

B×π×r^2=I×2.1×e^-3π×0.025^2

=4.11×e^-6×I

we have that

(flux)'= -U

so differentiating flux we get

so the inducted emf in the loop.

U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)

so, I=2.9×e^{-6}÷30

I=9.6×e^{-8}  A

6 0
3 years ago
When we utilize a visualization on paper/screen, that visualization is limited to exploring: Group of answer choices Relationshi
Mila [183]

Answer:

As many variables as we can coherently communicate in 2 dimensions

Explanation:

Visualization is a descriptive analytical technique that enables people to see trends and dependencies of data with the aid of graphical information tools. Some of the examples of visualization techniques are pie charts, graphs, bar charts, maps, scatter plots, correlation matrices etc.

When we utilize a visualization on paper/screen, that visualization is limited to exploring as many variables as we can coherently communicate in 2-dimensions (2D).

6 0
3 years ago
Engineered lumber should not be used for
Dimas [21]

Answer:

Composite panel garage doors

Explanation:

8 0
2 years ago
Other questions:
  • List irreversibilities
    11·1 answer
  • 3) What kind of bridges direct their load along it's curve and into the
    12·1 answer
  • A refrigerator has a cooling load of 50 kW. It has a COP of 2. It is run by a heat engine which consumes 50 kW of heat to supply
    12·1 answer
  • Wastewater flows into a once it is released into A floor drain
    11·1 answer
  • This is a multi-part question. Once an answer is submitted, you will be unable to return to this part As steam is slowly injecte
    15·1 answer
  • Table 1(a) shows the marks obtained by 40 students in an examination
    11·1 answer
  • A long rod of 60-mm diameter and thermophysical properties rho=8000 kg/m^3, c=500J/kgK, and k=50 W/mK is initally at a uniform t
    8·1 answer
  • How to update android 4.4.2 to 5.1 if there isnt any update available​
    15·2 answers
  • What is the condition for maximum efficiency in a DC motor?
    15·1 answer
  • Propose any improvements if there are any in brake system
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!