Astronomers can measure it by way of luminosity which is the power of a star or the amount of energy (light) the star admits from its surface. they also measure the brightness of a start as if it were to appear 32.6 light years from Earth
Answer:

Explanation:
We must do the conversions
mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 180.16
C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O
m/g: 24.5
(a) Moles of C₆H₁₂O₆

(b) Moles of CO₂

(c) Volume of CO₂
We can use the Ideal Gas Law.
pV = nRT
Data:
p = 0.960 atm
n = 0.8159 mol
T = 37 °C
(i) Convert the temperature to kelvins
T = (37 + 273.15) K= 310.15 K
(ii) Calculate the volume

The balanced equation for the above reaction is as follows;
Mg + 2HCl ---> MgCl₂ + H₂
stoichiometry of HCl to MgCl₂ is 2:1
we have been told that Mg is in excess therefore HCl is the limiting reactant
number of HCl moles reacted - 0.100 mol/L x 0.0256 L = 0.00256 mol
according to molar ratio, number of MgCl₂ moles formed - 0.00256/2
Therefore number of MgCl₂ moles formed - 0.00128 mol
mass of MgCl formed - 0.00128 mol x 95.20 g/mol = 0.122 g
Answer:
The correct option is;
The gas particles move faster, have the same molecular composition, and have weaker attractions between them than the liquid particles
Explanation:
The properties of the gas molecules in comparison to liquids are
1) The gas molecules are widely spread out
2) After evaporation and while in conditions favorable to the gaseous state, the kinetic energy of a gas is larger than the inter molecular attractive forces
3) A gas fills the container in which it is placed
For liquids
1) There are strong intermolecular forces holding the molecules together in a liquid
2) Liquid attractive forces in a liquid are strong enough to hold neighboring molecules
3) The volume of a liquid is definite.
Answer:
I think it's gold but I'm not sure, sorry
Explanation:
good luck tho :)