Explanations:
<u>Question</u> <u>1:</u> Lithium in 20.00+ g is C. or D., but 25.00+ g is D. which means this is the correct option.
I am unsure of <u>Question</u> <u>2</u>. I don't think it is mole though.
<u>Question</u> <u>3:</u> Boron in 25.00-30.00 g is B. or D., but 25.00 g would be C.
<u>Question</u> <u>4:</u> 2.393 x 1024 atoms of Oxygen is 63.58 mole O. I don't know for sure, but I think this is correct.
<u><em>I am NOT professional. There is a chance I am incorrect. Please reply to me if I've made a mistake.</em></u>
Bonds between carbon and oxygen are more polar than bonds between sulfur and oxygen. nevertheless, sulfur dioxide (SO₂) exhibits a dipole moment while carbon dioxide (CO₂) does not because of the difference in their shape, CO₂ is having linear geometry thus exhibit zero dipole moment while SO₂ is having bent shape thus exhibit dipole moment. So, despite the fact that bonds between carbon and oxygen are more polar than bonds between sulfur and oxygen. nevertheless, sulfur dioxide (SO₂) exhibits a dipole moment while carbon dioxide (CO₂) does not.
Answer:
3.64g
Explanation:
Given parameters:
Mass of NH₃ = 18.1g
Mass of Cu₂O = 90.4g
Unknown:
Limiting reactant = ?
Mass of N₂ formed = ?
Solution:
The reaction equation is given as:
Cu₂O + 2NH₃ → 6Cu + N₂ + 3H₂O
The limiting reactant is the one in short supply in the reaction. Let us find the number of moles of the given species;
Number of moles =
Molar mass of Cu₂O = 2(63.6) + 16 = 143.2g/mol
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Number of moles of Cu₂O =
= 0.13moles
Number of moles of NH₃ =
= 5.32moles
From this reaction;
1 mole of Cu₂O combines with 2 mole of NH₃
So 0.13moles of Cu₂O will combine with 0.13 x 2 mole of NH₃
= 0.26moles of NH₃
Therefore, Cu₂O is the limiting reactant. Ammonia is in excess;
Mass of N₂;
Mass = number of moles x molar mass
1 mole of Cu₂O will produce 1 mole of N₂
0.13 mole of Cu₂O will produce 0.13 mole of N₂
Mass = 0.13 x (2 x 14) = 3.64g
Explanation:
atom changes from a ground state to an excited state by taking on energy from its surroundings in a process called absorption. The electron absorbs the energy and jumps to a higher energy level. In the reverse process, emission, the electron returns to the ground state by releasing the extra energy it absorbed
It is going through a physical change