Here is your answer
C. towards the floor
REASON:
Using Fleming's Left hand rule we can determine the direction of force applied on a moving charged particle placed in a magnetic field.
The direction of current will be just opposite to the direction of electron(negative charge) because current moves from positive to negative terminal whereas electron moves from negative to positive terminal.
So, direction of current- North to South
Now applying Fleming's Left hand rule we get the direction of force in downward direction, i.e. towards the floor.
HOPE IT IS USEFUL
The net force on the cart is 100 N in the direction of its motion, so by Newton's second law we can find the acceleration <em>a</em> applied to it:
100 N = (50 kg) <em>a</em>
<em>a</em> = (100 N) / (50 kg)
<em>a</em> = 2 m/s²
The cart starts at rest and travels a distance of 10 m, so that its final velocity <em>v</em> satisfies
<em>v</em> ² - 0² = 2 (2 m/s²) (10 m)
<em>v</em> ²= 40 m²/s²
and so the cart ends up with kinetic energy
KE = 1/2 <em>m</em> <em>v</em> ² = 1/2 (50 kg) (40 m²/s²) = 1000 J
Answer:
Weight on Earth = We = 186.2 N
Weight on Mars = Wm = 70.94 N
Explanation:
The weight of an object is defined as the force applied on the object by the gravitational field. The magnitude of weight is given by the following formula:
W = mg
were,
W= Weight of Eric
m = mass of Eric
g = acceleration due to gravity
ON EARTH:
W = We = Eric's Weight on Earth = ?
m = Eric's Mass on Earth = 19 kg
ge = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
We = (19 kg)(9.8 m/s²)
<u>We = 186.2 N</u>
<u></u>
ON MARS:
W = Wm = Eric's Weight on Mars = ?
m = Eric's Mass on Mars = 19 kg
gm = acceleration due to gravity on Mars = 0.381(ge) = (0.381)9.8 m/s² = 3.733 m/s²
Therefore,
Wm = (19 kg)(3.733 m/s²)
<u>Wm = 70.94 N</u>
Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.
Out of the choices given, the best choice to explain the direction of the moving force of air is from area o high pressure to areas of low pressure.