A <span>Compound has a definte ratio of components</span>
Answer:
Number of photons travel through pin hole=
Explanation:
First we will calculate the energy of single photon using below formula:

Where :
h is plank's constant with value 
c is the speed of light whch is
λ is the wave length = 532nm

E=
J
Number of photons emitted per second:

Number of photons emitted per second=
=
Where:
A-hole is area of hole
A-beam is area of beam
d-hole is diameter of hole
d-beam is diameter if beam
=
=
=
Number of photons travel through pin hole=
Number of photons travel through pin hole=
Answer:
4987N
Explanation:
Step 1:
Data obtained from the question include:
Mass (m) = 0.140 kg
Initial velocity (U) = 28.9 m/s
Time (t) = 1.85 ms = 1.85x10^-3s
Final velocity (V) = 37.0 m/s
Force (F) =?
Step 2:
Determination of the magnitude of the horizontal force applied. This can be obtained by applying the formula:
F = m(V + U) /t
F = 0.140(37+ 28.9) /1.85x10^-3
F = 9.226/1.85x10^-3
F = 4987N
Therefore, the magnitude of the horizontal force applied is 4987N
If you meant the car travels 10 meters or miles then the answer would be 5m/s because v=d/t (v=10/2)
Answer:
0.541 nm
Explanation:
The condition for maxima is,

Here, m=0,1,2,.....
And d is the slit separation, m is the order of maxima,
is the wavelength.
Given that, the 17.3 eV electron posses a wavelength of

And the order of maxima is
.
And the angle at which first order maxima occur is,
.
Put these values in maxima condition while solving for d.

Therefore, the slit separation is 0.541 nm.