Answer:
drawing of ear step by step
<span>On the scale the only external forces are the man's weight acting downwards and the normal force which the scale exerts back to support his weight.
So F = Ma = mg + Fs
The normal force Fs (which is actually the reading on the scale) = Ma + Mg
But a = 0
So Fs = Mg which is just his weight.
Fs = 75 * 9.8 = 735N</span>
Answer:
Explanation:
An inelastic collision is one where 2 masses collide and stick together, moving as a single mass after the collision occurs. When we talk about this type of momentum conservation, the momentum is conserved always, but the kinetic momentum is not (the velocity changes when they collide). Because there is direction involved here, we use vector addition. The picture before the collision has the truck at a mass of 3520 kg moving north at a velocity of 18.5. The truck's momentum, then, is 3520(18.5) = 65100 kgm/s; coming at this truck is a car of mass 1480 kg traveling east at an unknown velocity. The car's momentum, then, is 1480v. The resulting vector (found when you pick up the car vector and stick the initial end of it to the terminal end of the truck's momentum vector) forms the hypotenuse of a right triangle where one leg is 65100 kgm/s, and the other leg is 1480v. Since we already know the final velocity of the 2 masses after the collision, we can use that to find the final momentum, which will serve as the resultant momentum vector in our equation (we'll get there in a sec). The final momentum of this collision is
p = mv and
p = (3520 + 1480)(13.6) so
p = 68000. Final momentum. The equation for this is a take-off of Pythagorean's Theorem and the one used to find the final magnitude of a resultant vector when you first began your vector math in physics. The equation is
which, in words, is
the final momentum after the collision is equal to the square root of the truck's momentum squared plus the car's momentum squared. Filling in:
and
and
and
and
so
v = 13.3 m/s at 72.6°
Answer:
a) C = 4,012 10⁻¹⁴ F, b) Q = 1.6 10⁻¹¹ C
, c) U = 3.21 10⁻¹¹ J
Explanation:
a) The capacitance of a capacitor is
C = k e₀ A / d
Let's calculate
C = 4 8.85 10⁻¹² 17 10⁻⁴ / 0.150 10⁻²
C = 4,012 10⁻¹⁴ F
b) let's look the charge
C = Q / ΔV
Q = C ΔV
Q = 4,012 10⁻¹⁴ 400
Q = 1.6 10⁻¹¹ C
c) The stored energy
U = ½ C ΔV²
U = ½ 4,012 10⁻¹⁴ 400²
U = 3.21 10⁻¹¹ J
Answer:
C.) 1.5 kg
Explanation:
Start with the equation:

Plug in what you know, and solve:

Find matching soluation:
C.) 1.5 kg