The change in momentum is 5500 kg m/s
Explanation:
The change in momentum of an object is given by

where
m is the mass of the object
v is the final velocity
u is the initial velocity
In this problem, we have:
(mass of the motorcycle)
(final velocity)
(initial velocity)
Therefore, the change in momentum is

Learn more about change in momentum:
brainly.com/question/9484203
#LearnwithBrainly
Answer:
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
Explanation:
A gradient of concentration is the difference between in concentration of one place / area substance to different area. Having a molecule flow down its concentration gradient means moving the molecules from hypotonic areas to the concentration hypertonic areas
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
The answer is: " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V ; That is, "mass divided by volume" ;
Density is expressed as:
__________________________________________
"mass per unit volume"; in which the "mass" is expressed in units of "g" ("grams") ; and the "unit volume" is expressed in units of:
"cm³ " or "mL";
_____________________________________________
{Note the exact equivalent: 1 cm³ = 1 mL }.
____________________________________________
→ The formula is: " D = m / V " ;
___________________________________________
in which:
"D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given);
"m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
"V" refers to the "volume", in units of "cm³ " ;
which is: "23.4 cm³ " (given);
_________________________________________________
We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________
D = m / V ;
_________________________________________________________
And we rearrange; to isolate "m" (mass) on ONE side of the equation; and then we plug in our known/given values;
to solve for "m" (mass); in units of "g" (grams) ;
___________________________________________________
Multiply each side of the equation by "V" ;
____________________________________________________
V * { D = m / V } ; to get:
____________________________________________________
V * D = m ; ↔ m = V * D ;
___________________________________________________
Now, we plug in the given values for "V" (volume) and "D" (density) ; to solve for the mass, "m" ;
______________________________________________________
m = V * D ;
m = (23.4 cm³) * (8.9 g / 1 cm³) = (23.4 * 8.9) g = 208.26 g ;
→ Round to "208 g" (3 significant figures);
____________________________________
The answer is: " 208 g " .
_____________________________________________________
Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Answer:
Given, Apparent weight(W₂)=4.2N
Weight of liquid displaced (u)=2.5N
Let weight of body in air = W₁
Solution,
U=W₁-W₂
W₁=4.2=2.5=6.7N
∴Weight of body in air is 6.7N