Answer:
third option: log_2 1/3
Step-by-step explanation:
change of base formula:
log_b a= (log_x a)/(log_x b)
(log 1/3)/(log 2)
apply reverse change of base formula
2 from log 2 becomes new base, and 1/3 becomes the other number
=log_2 1/3
let each box length be 1
<em><u>for</u></em><em><u> </u></em><em><u>white</u></em><em><u> </u></em><em><u>triangle</u></em>
area = ½bh
=½(4)(2)
=4
<em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u> </u></em><em><u>o</u></em><em><u>r</u></em><em><u>a</u></em><em><u>n</u></em><em><u>g</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>r</u></em><em><u>i</u></em><em><u>a</u></em><em><u>n</u></em><em><u>g</u></em><em><u>l</u></em><em><u>e</u></em>
area=½(2)(3)
=3
<em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u> </u></em><em><u>b</u></em><em><u>l</u></em><em><u>u</u></em><em><u>e</u></em><em><u> </u></em><em><u>m</u></em><em><u>a</u></em><em><u>r</u></em><em><u>k</u></em><em><u>e</u></em><em><u>d</u></em><em><u> </u></em><em><u>b</u></em><em><u>o</u></em><em><u>x</u></em><em><u>e</u></em><em><u>s</u></em>
each of the box
area=l²
=(1)²
=1
there are 16 boxes
so the total area will be 16
total area of the hexagon = 4+3+16
=23 square units
(42 - 14sqrt2)/5 because rationalizing means getting the root out of the denominator, which is done by multiplying the denominator by a negative or positive root depending on the situation
The equation will be made up of the cost of x number of adult tickets at 74 each which is represented by 74x and youth tickets (an unknown number y) at 35 each which is represented by 35y. We add them together and set them equal to Cost. Cost = 74x + 35y
Answer:

Step-by-step explanation:
Well we can start by seeing if the parabola is the same width by comparing it to its parent function ( y = x^2 )
In y = x^2 the 2nd lowest point is just up 1 and right 1 away from the vertex.
This is not true for our parabola.
So we can widen it by to the desidered width by making the x^2 into a .5x^2.
So far we’ve got y = .5x^2
Now the parabola y intercept is at -5.
So we can add a -5 into the equation making it.
y = .5x^2 - 5
Now for the x value.
So we can find the x value by seeing how far away the parabola is from from the y axis.
So the x value is -2x.
So the full equation is 
Look at the image below to compare.