Hydrogen sulfide = hidrogen + sulfur
6.500 g
a) 0.384 g + x
=> 6.500 = 0.384 + x => x = 6.500 - 0.384 = 6.116 g
Answer: 6.116 g of sulfur must be obtained
b) this experiment demonstrate the conservation of mass.
c) Dalton's atomic model states that the atoms cannot be created, split or be destroyed, and so in a chemical reaction the atoms rearrange but the number of each type of atoms remain constant, so the mass of each type of atoms and the total mass remain constant.
Answer:
Explanation:
SF4 forms a trigonal bipyramidal shape and its molecular shape is that of a "see-saw".
Since sulfur is in 3rd period, it violates the octet rule and has more than 8 electrons accompanying its valence shell.
Here's a picture of lewis structure and electron geometry.
Explanation:
Answer is 4Al + 3O2 =>2Al2O3
I hope it's helpful!
Answer:
B
Explanation:
When it freezes, it will be a solid. The molecules will barely move, not as much as in the other answer choices.
Answer: Volume of CO2 is 89127 mL
Explanation: The reaction that takes place is: C2H2 + O2 --> CO2 + H2O
The amount of C2H2 that react allow us to predict the amount of CO2 that will be obtained

26g/1mol is molar mass of C2H2 and 2/4 is the molar relation between CO2 and C2H2 in this reaction. Canceling units, at the end mol of CO2 are obtained
Now with the moles of CO2 and the ideal gases equation is possible to calculate the volumen occupied by the gas.
PV = RnT where P: pressure, V: volume, R: ideal gas constant, n: moles and T: temperature expressed in K (add 273,15 to °C temperature: 37,4°C + 273,15 = 310,55K)
V= RnT/P

To express volume in mL multiply the L result by 1000 which equals 89127 mL