You can use M x V = M' x V'
3 x V = 250 x 1.2
V = 100 ml
Correct Answer: <span>(2) The mixture is homogeneous and cannot be separated by filtration.
Reason: Solution is said to be homogenous, if it contains single phase. In present case, salt and water, when dissolved in water forms a single phase. Hence, it is referred as homogenous solution. Also, individual components of homogenous system cannot be separated by the process of filtration. </span><span />
Answer:
This question is incomplete
Explanation:
There are two major forms of energy; these are potential and kinetic energy. Kinetic energy is the energy present in moving options. Examples include mechanical and electrical energy.
The formula for kinetic energy is 1/2mv² where "m" is mass and "v" is velocity.
While potential energy is the energy present in stationary objects that can be put to use in future. Example includes a ball in its resting state. The formula for potential energy is "mgh" where "m" is mass, "g" is acceleration due to gravity and "h" is height
Considering the law of conservation of energy which states that energy can neither be created nor destroyed but can be transformed from one form to another. Looking at the example provided earlier for potential energy, a ball in its resting position (having a potential energy) when kicked will have a kinetic energy (which can be calculated with the formula provided earlier), hence
Total energy = potential energy (P.E) + kinetic energy (K.E)
This formula and the explanation above can be used to answer the completed question.
NOTE: There is no standard relationship between P.E and K.E. They could be directly or indirectly proportional depending on the circumstance.
Malleable, shiny and good conductors
A B E
Answer:
- The abundance of 107Ag is 51.5%.
- The abundance of 109Ag is 48.5%.
Explanation:
The <em>average atomic mass</em> of silver can be expressed as:
107.87 = 106.90 * A1 + 108.90 * A2
Where A1 is the abundance of 107Ag and A2 of 109Ag.
Assuming those two isotopes are the only one stables, we can use the equation:
A1 + A2 = 1.0
So now we have a system of two equations with two unknowns, and what's left is algebra.
First we<u> use the second equation to express A1 in terms of A2</u>:
A1 = 1.0 - A2
We <u>replace A1 in the first equation</u>:
107.87 = 106.90 * A1 + 108.90 * A2
107.87 = 106.90 * (1.0-A2) + 108.90 * A2
107.87 = 106.90 - 106.90*A2 + 108.90*A2
107.87 = 106.90 + 2*A2
2*A2 = 0.97
A2 = 0.485
So the abundance of 109Ag is (0.485*100%) 48.5%.
We <u>use the value of A2 to calculate A1 in the second equation</u>:
A1 + A2 = 1.0
A1 + 0.485 = 1.0
A1 = 0.515
So the abundance of 107Ag is 51.5%.