P=2(9-15) is what i got first i simplify 1/2p to p/2, then subtract from both sides, multply both sides by 2, then regroup terms, and last switch sides
Answer: x = 2 ; -11 .
___________________________________
Explanation:
_____________________________________________
Given the equation:
_____________________________________________
x² + 9x −<span> 22 = 0 ; Solve for: "x" ;
_____________________________________________
Let us factor the "left-hand side" of the equation:
_____________________________________________
"x</span>² + 9x −<span> 22" ;
_____________________________________________
What are the factors of "-22"" that add up to "positive 9" ?
_____________________________________________
Let us list the factors of "-22" :
____________________________________________
-2, 11; </span>→ -2 + 11 = 9 ;<span>
-11, 2; </span>→ -11 + 2 = -9 ;<span>
____________________________________________
So we have: "-2" and "11" ;
____________________________________________
So; </span> "x² + 9x − 22" ; factors into " (x−2)(x + 11)" ;
____________________________________________
We have: (x−2)(x + 11) = 0 ;
So: x − 2 = 0 ;
Add "2" to each side of the equation;
x − 2 + 2 = 0 + 2 ;
x = 2 ;
___________________________________
x + 11 = 0 ;
Subtract "11" from each side of the equation;
x + 11 − 11 = 0 − 11 ;
x = -11 ;
___________________________________
Answer: x = 2 ; -11 .
___________________________________
SA= ( BH + 2LS +LB)
B= 16
H=6
L=8
S=10
SA= ( 16*6 +2(8*10) +8*16)=
SA= (96+2(80)+128)=
SA= (96+160+128)=
SA= 384
Answer:
The length of each side of the cube is 
Step-by-step explanation:
we know that
The volume of a cube is equal to

but remember that in a cube
Length, width and height have the same value
so
Let
b-----> the length side of the cube

substitute in the formula

In this problem we have

substitute and solve for b

![b=\sqrt[3]{\frac{1}{512}}\\ \\b=\frac{1}{8}\ m](https://tex.z-dn.net/?f=b%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B512%7D%7D%5C%5C%20%5C%5Cb%3D%5Cfrac%7B1%7D%7B8%7D%5C%20m)
therefore
The length of each side of the cube is 