Answer: The first isotope has a relative abundance of 79% and last isotope has a relative abundance of 11%
Explanation: Given that the average atomic mass(M) of magnesium
= 24.3050amu
Mass of first isotope (M1) = 23.9850amu
Mass of middle isotope (M2)=24.9858amu
Mass of last isotope(M3)= 25.9826amu
Total abundance = 1
Abundance of middle isotope = 0.10
Let abundance of first and last isotope be x and y respectively.
x+0.10+y =1
x = 0.90-y
M = M1 × % abundance of first isotope + M2 × % of middle isotope +M3 ×% of last isotope
24.03050= 23.985× x + 24.9858 ×0.10 + 25.9826×y
Substitute x= 0.90-y
Then
y = 0.11
Since y=0.11, then
x= 0.90-0.11
x=0.79
Therefore the relative abundance of the first isotope = 11% and the relative abundance of the last isotope = 79%
Another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
<h3>What is a microspectrophotometer?</h3>
Microspectrophotometry is a biological technique used to measure the absorption or transmission spectrum of a solid or liquid material in either transmitted or reflected light.
Microspectrophotometry can also measure the emission of light by a sample, which is usually small as the micro implies.
One advantage of microspectrophotometry is that the sample does not get damaged. However,
However, another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
Learn more about microspectrophotometry at: brainly.com/question/5832827
pretty sure its B thank me later
Answer:
Homologous series is defined as a systematic order of structurally similar organic compound containing same functional group in their family and two adjacent members differ in their molecular formula by -CH2 unit.
Characteristics:
1.Various members of homologous series contain same functional group.
2.Various members of homologous series can be represented by common formula.
3. All members of a homologous series have almost similar chemical properties.
4. All members have common method of preparation.
5.Two successive members of homologous series have different chain length or difference in their molecular formula by -CH2 unit.
6.The members of homologous series show different physical properties.