The main difference between<span> the two is that Enlightenment rationalism dwells in abstract inwardness. and it is only through this echo that German Christianity is ...</span>
Given data:
* The mass of the baseball is 0.31 kg.
* The length of the string is 0.51 m.
* The maximum tension in the string is 7.5 N.
Solution:
The centripetal force acting on the ball at the top of the loop is,
![\begin{gathered} T+mg=\frac{mv^2}{L}_{} \\ v^2=\frac{L(T+mg)}{m} \\ v=\sqrt[]{\frac{L(T+mg)}{m}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%2Bmg%3D%5Cfrac%7Bmv%5E2%7D%7BL%7D_%7B%7D%20%5C%5C%20v%5E2%3D%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%7D%20%5Cend%7Bgathered%7D)
For the maximum velocity of the ball at the top of the vertical circular motion,
![v_{\max }=\sqrt[]{\frac{L(T_{\max }+mg)}{m}}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T_%7B%5Cmax%20%7D%2Bmg%29%7D%7Bm%7D%7D)
where g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} v_{\max }=\sqrt[]{\frac{0.51(7.5_{}+0.31\times9.8)}{0.31}} \\ v_{\max }=\sqrt[]{\frac{0.51(10.538)}{0.31}} \\ v_{\max }=\sqrt[]{17.34} \\ v_{\max }=4.16\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%287.5_%7B%7D%2B0.31%5Ctimes9.8%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%2810.538%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B17.34%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D4.16%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Thus, the maximum speed of the ball at the top of the vertical circular motion is 4.16 meters per second.
Answer: In that case, Put something like "My hypothesis is that the car will take (x) seconds to get to checkpoint 1, (x) seconds to get to checkpoint 2, (x) seconds to get to checkpoint 3, and (x) seconds to get to checkpoint 4" Replacing x with random numbers, or number close to the actual found numbers, but honestly as long as the guesses arent outrageous you should get the question right
Explanation:
Those organic structures that do not seem to play any important biological function in the organism that possesses them are known as vestigial structures.
<h2>What is a vestigial structure?</h2>
A vestigial structure is one that has atrophied or lost its original function throughout the course of evolution.
- It generally refers to those organic structures that were useful at some point, but are now practically or totally useless.
- These structures are preserved as an inheritance of the evolutionary process, because at some point an ancestor of the current species had that structure, which was functional, but it ceased to be important and would end up atrophy.
Therefore, we can conclude that vestigial structures are structures that some organisms still conserve as an inheritance from their ancestors but that, for some reason or another, are no longer useful for the functioning of the same.
Learn more about vestigial structures here: brainly.com/question/2141655
The question is incomplete. Here is the complete question.
A floating ice block is pushed through a displacement vector d = (15m)i - (12m)j along a straight embankment by rushing water, which exerts a force vector F = (210N)i - (150N)j on the block. How much work does the force do on the block during displacement?
Answer: W = 4950J
Explanation: <u>Work</u> (W), in physics, is done when a force acts on an object that has a displacement form a place to another:
W = F · d
As the formula shows, Work is a scalar product, i.e, it results in a number, so, Work only has magnitude.
Force and displacement for the ice block are in 2 dimensions, then work will be:
W = (210)i - (150)j · (15)i - (12)j
W = (210*15) + (150*12)
W = 3150 + 1800
W = 4950J
During the displacement, the ice block has a work of 4950J