Answer:
i. The error is the rough convex mirror.
ii. This should be replaced with a smooth convex morror.
Explanation:
Reflection is dependent on the surface involved and has two types; diffuse and specular. When the surface is rough, diffused reflection is observed. The surface causes a distortion of the incident light (the rays would be reflected at different angles to one another) after reflection. This makes some rays to interfere with one another. While specular reflection is observed with a smooth surface.
In the statement, the rough convex mirror would produce a distorted reflection which would produce diffused reflection. The effect is that few or no rays (depending on the degree of how rough the surfce is) would be reflected to the other smooth, flat diagonal mirror.
The radius, r, of the child from the center of the wheel is
r = 1.3 m
The wheel makes one revolution in 4.2 s. Its angular velocity is
ω = (2π rad)/(4.2 s) = 1.496 rad/s
The linear speed of the child is the tangential velocity, given by
v = rω
= (1.3 m)*(1.496 rad/s)
= 1.945 m/s
Answer: 1.95 m/s (nearest hundredth)
Answer:
acceleration
Explanation:
The rate at which velocity changes is the definition of the physical quantity called acceleration, and it is given by the formula: ![a=\frac{v_f-v_i}{\Delta t}](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_f-v_i%7D%7B%5CDelta%20t%7D)
where
is the time that took to change from the initial velocity
to the final velocity ![v_f](https://tex.z-dn.net/?f=v_f)
Answer:
331.7m/s
Explanation:
Given parameters:
Initial velocity = 100m/s
Acceleration = 50m/s²
Distance = 1km = 1000m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we have to apply the right motion equation shown below;
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
Now insert the parameters and solve;
v² = 100² + (2 x 50 x 1000)
v² = 110000
v = √110000 = 331.7m/s
B) law of conservation of momentum
It states that the total momentum of a system before impact is the same as the total momentum of the system after impact.
In this case total momentum before impact:
10kg*5m/s + 5kg * 0m/s = 50 kg m/s
After Impact:
10kg*0m/s + 5kg*10m/s = 50 kg m/s
You can see the momentum before and after impact is same as 50 kg m/s
Of course we assumed that the first cart stopped after the impact, and there are no energy losses.