Explanation:
Resistors connected in series obey the following equation:

Resistors connected in parallel obey the following equation:

The total current of the circuit will obey the Ohm's Law: V = IR. And the current will be divided across the resistors (bulbs) depending on their resistances. So, if a bulb has a higher resistance, then its current will be lesser, and it will be less bright. If a bulb has a lower resistance, then its current will be higher, and it will be brighter.
According to the above resistances connected in series and parallel, clearly, the resistances (bulbs) connected in series will have more resistance in total, and therefore less current will flow across them, and they will be less bright.
In order to read the publications of his peers, or read his own notes of the work
that he did on the previous day, or find his coffee mug on his desk in the lab, the
research scientist must arrange to have each of them illuminated with visible
wavelengths of light, and then he must catch the light reflected from each of them
with his eyes.
According to e2020, the answer is reduced performance due to stereotype threat.
Can you sent a picture of the answers
Answer: On the basis of speed they are all equivalent.
Yellow light = Fm radio wave = Green light = X-ray = AM radio wave = Infrared wave
Explanation:
Yellow light, Fm radio wave, Green light ,X-ray, AM radio wave and Infrared wave are all electromagnetic waves, and all electromagnetic waves move at the same vacuum speed which is the speed of light and is approximately 3.0x10^8 m/s.
They only differ in wavelength and frequency
c = λf
c (speed of light) = λ (wavelength) x f (frequency)
Therefore; on the basis of speed they are all equivalent.
Yellow light = Fm radio wave = Green light = X-ray = AM radio wave = Infrared wave