Considering the definition of kinetic energy, the bullet has a kinetic energy of 156.25 J.
<h3>Kinetic energy</h3>
Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.
Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and in a rest position, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its rest state by applying a force to it.
The kinetic energy is represented by the following expression:
Ec= ½ mv²
Where:
- Ec is the kinetic energy, which is measured in Joules (J).
- m is the mass measured in kilograms (kg).
- v is the speed measured in meters over seconds (m/s).
<h3>Kinetic energy of a bullet</h3>
In this case, you know:
Replacing in the definition of kinetic energy:
Ec= ½ ×0.500 kg× (25 m/s)²
Solving:
<u><em>Ec= 156.25 J</em></u>
Finally, the bullet has a kinetic energy of 156.25 J.
Learn more about kinetic energy:
brainly.com/question/25959744
brainly.com/question/14028892
#SPJ1
Answer:
electrons
Explanation:
The total charge Q is the sum of the charge of the N electrons contained in the sphere:

charge of a electron
We solve to find N:

Answer:
A) Impulse is the same for both the objects
B) The higher is the speed, the greater will be the height.
Explanation:
Part a)
The time of interaction of the two bodies i.e the hanging mass and the stick is same. Thus, force caused by dart on the block = force caused by block on the dart. Hence, impulse is the same for both the objects.
Part B
The energy will be conserved in the entire reaction process
Hence, Kinetic energy = potential energy
0.5Mv^2 = gh(md+mb)
H is directly proportional to the square of speed.
Hence, the higher is the speed, the greater will be the height.
Answer: C. the rod gains mass and the fur loses mass.
Explanation:Atomic particles have mass. The electron has a mass that is approximately 1/1836 that of the proton and with exchange exchange of charge this is also factored in. The movement of effect described above is known as the triboelectic charging process—charging by friction—which results in a transfer of electrons between the two objects when they are rubbed together. Plastic having a much greater affinity for electrons than animal fur pulls electrons from the atoms of fur, leaving both objects with an imbalance of charge. The plastic rod would have an excess of electrons and the fur has a shortage of electrons. Having an excess of electrons, the plastic is charged negatively and has more mass. In the same vein, the shortage of electrons on the fur leaves it with a positive charge and consequently with lesser mass.