Answer:
Explanation:
Mercury moves the fastest.
Via the half-life equation:

Where the time elapse is 11,460 year and the half-life is 5,730 years.

Therefore after 11,460 years the amount of carbon-14 is one fourth (1/4) of the original amount.
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Impulse is a force acting briefly on a body and producing a finite change of momentum.
This relates to momentum because impulse is a change in momentum. Impulse = momentum. Since force is a vector quantity, impulse is also a vector in the same direction. Impulse applied to an object produces equivalent vector change in its linear momentum, also in the same direction. m•(triangle)v