Answer:
Explanation:
Let the velocity be v
Total energy at the bottom
= rotational + linear kinetic energy
= 1/2 Iω² + 1/2 mv² ( I moment of inertia of shell = mr² )
= 1/2 mr²ω² + 1/2 mv² ( v = ω r )
= 1/2 mv² +1/2 mv²
= mv²
mv² = mgh ( conservation of energy )
v² = gh
v = √gh
= √9.8 x 1.8
= 4.2 m /s
Answer:
m = 3.91 kg
Explanation:
Given that,
Mass of the object, m = 3.74 kg
Stretching in the spring, x = 0.0161 m
The frequency of vibration, f = 3.84 Hz
When the object is suspended, the gravitational force is balanced by the spring force as :



k = 2276.52 N/m
The frequency of vibration is given by :



m = 3.91 kg
So, the mass of the object is 3.91 kg. Hence, this is the required solution.
This is a conservation of momentum problem! Here's how to do it:
metamorphic, sedimentary, igneous
Answer:2800000j
Explanation:
For us to know the kinetic energy of the vehicle,
Where m is the mass
And v is the velocity
Then, K.E=1/2mv^2
While, K.E=1/2×3500×40^2
Therefore, our answer will now be
K.E=2800000j