On Earth, none of the atmosphere is.
Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
Answer: 115.2kg
Explanation:
Net force = 265 N
Acceleration of bike & rider = 2.30m/s2 (The SI unit of acceleration is m/s2)
Mass of the bike and rider together = ?
Since force is the product of the mass of an object and the acceleration by which it moves, Force = Mass x Acceleration
265N = Mass x 2.30m/s2
Mass = (265N/2.30m/s2)
Mass = 115.2 kg
Thus, the Mass of the bike and rider together is 115.2kg
<h2>
Answer:</h2>
D. (1m, 0.5m)
<h2>
Explanation:</h2>
The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;
x = (m₁x₁ + m₂x₂ + m₃x₃) / M ----------------(i)
y = (m₁y₁ + m₂y₂ + m₃y₃) / M ----------------(ii)
Where;
M = sum of the masses
m₁ and x₁ = mass and position of first mass in the x direction.
m₂ and x₂ = mass and position of second mass in the x direction.
m₃ and x₃ = mass and position of third mass in the x direction.
y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.
From the question;
m₁ = 6kg
m₂ = 4kg
m₃ = 2kg
x₁ = 0m
x₂ = 3m
x₃ = 0m
y₁ = 0m
y₂ = 0m
y₃ = 3m
M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg
Substitute these values into equations (i) and (ii) as follows;
x = ((6x0) + (4x3) + (2x0)) / 12
x = 12 / 12
x = 1 m
y = (6x0) + (4x0) + (2x3)) / 12
y = 6 / 12
y = 0.5m
Therefore, the center of mass of the system is at (1m, 0.5m)
Answer: 2.92 s
Explanation:
Given
Mass of ball is 
The initial velocity of the ball is 
Velocity after the rebound is 
Force during the contact is 
We know, change in momentum is Impulse


Thus, the force is applied for 2.92 s