The change in the total energy of the object is zero (0).
The given parameters:
work done by the machine, W = 50 J
mass of the object, m = 10 kg
To find:
the change in the total energy of the object
The change in the total energy of the object is the difference between the objects initial energy due to its position and the work done on the object.
Based on work energy-theory, the work done on the object is equal to the energy of the object.
- The energy of the object = work-done on the object
- The change in total energy = 50 J - 50 J = 0
Thus, the change in the total energy of the object is zero (0).
Learn more here: brainly.com/question/20377140
Use newtons second law F=ma, plug in the given values which gives us the answer of 22 kg for the mass
You literally just put your fingers in your genitals? is this for a sex ed course...?
Answer:
last option is the correct one
The time when the particle is at rest is at 1.63 s or 3.36 s.
The velocity is positive at when the time of motion is at
.
The total distance traveled in the first 10 seconds is 847 m.
<h3>When is a particle at rest?</h3>
- A particle is at rest when the initial velocity of the particle is zero.
The time when the particle is at rest is calculated as follows;
s(t) = 2t³ - 15t² + 33t + 17

The velocity is positive at when the time of motion is as follows;
.
The total distance traveled in the first 10 seconds is calculated as follows;

Learn more about motion of particles here: brainly.com/question/11066673