Answer:
the maximum extent of a vibration or oscillation, measured from the position of equilibrium.
Explanation:physics
Answer:
Explanation:The final homogenous solution, after cooling it to 40°C, will contain 47 g of potassium sulfate disolved in 150 g of water, so you can calculate the amount disolved per 100 g of water in this way:
[47 g of solute / 150 g of water] * 100 g of g of water = 31.33 grams of solute in 100 g of water.
So, when you compare with the solutiblity, 15 g of solute / 100 g of water, you realize that the solution has more solute dissolved with means that it is supersaturated.
To make a saturated solution, 15 grams of potassium sulfate would dissolve in 100 g of water.
Read more on Brainly.com - brainly.com/question/5143785#readmore
Answer:
I believe the answer is 0.100.
Explanation:
Hope my answer has helped you!
<u>Answer:</u> The concentration of hydrogen ion and bromoacetate ion is 0.0132 M and 0.0132 M resepectively and that of bromoacetic acid is 0.0868 M
<u>Explanation:</u>
We are given:
Molarity of bromoacetic acid = 0.100 M
Percent of ionization = 13.2 %
The chemical equation for the ionization of bromoacetic acid follows:
1 mole of bromoacetic acid produces 1 mole of bromoacetate ion and 1 mole of hydrogen ion
Molarity of hydrogen ion = 13.2 % of 0.100 =
Molarity of bromoacetate ion = molarity of hydrogen ion = 0.0132 M
Molarity of bromoacetic acid = Molarity of solution - Molarity of ionized substance
Molarity of bromoacetic acid = 0.100 - 0.0132 = 0.0868 M
Hence, the concentration of hydrogen ion and bromoacetate ion is 0.0132 M and 0.0132 M resepectively and that of bromoacetic acid is 0.0868 M