The correct option would be 3.
Only thermal energy changes
Hope this helps you
Brainliest would be appreciated
-AaronWiseIsBae
Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE
Answer:
A Lewis acid is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct
Explanation:
CAN YOU MAKE ME BRAINELIST PLEASE
Answer:
Explanation:
C₂H₂ + 2H₂ = C₂H₆
1 mole 2 mole 1 mole
Feed of reactant is 1.6 mole H₂ / mole C₂H₂
or 1.6 mole of H₂ for 1 mole of C₂H₂
required ratio as per chemical reaction written above
2 mole of H₂ for 1 mole of C₂H₂
So H₂ is in short supply . Hence it is limiting reagent .
1.6 mole of H₂ will react with half of 1.6 mole or .8 mole of C₂H₂ to form .8 mole of C₂H₆
a )Calculate the stoichiometric reactant ratio = mole H₂ reacted/mole C₂H₂ reacted
= 1.6 / .8 = 2 .
b )
yield ratio = mole C₂H₆ formed / mole H₂ reacted ) = 0.8 / 1.6 = 1/2 = 0.5 .