Answer:
P₂ = 130.18 kPa
Explanation:
In this case, we need to apply the Gay-Lussack's law assuming that the volume of the container remains constant. If that's the case, then:
P₁/T₁ = P₂/T₂ (1)
From here, we can solve for the Pressure at 273 K:
P₂ = P₁ * T₂ / T₁ (2)
Now, all we need to do is replace the given data and solve for P₂:
P₂ = 340 * 273 / 713
<h2>
P₂ = 130.18 kPa</h2>
Hope this helps
The fourth option on Edgen, "two alcohol functional groups". You're welcome :)
Answer:

Explanation:
Hello!
In this case, considering the partial Dalton's law of partial pressures, we can notice that the total pressure equals the pressure of steam and the pressure of hydrogen, which can be determined as shown below:

Thus, by using the ideal gas law, we can compute the moles of hydrogen as shown below:

Best regards!
Convert Mg to grams
1g =1000mg what about 3.91 Mg
= 3.91mg x 1g/1000mg= 3.91 x10^-3 g
moles= mass/molar mass
that is 3.91 x10^-3g /99 g/mol=3.95 x10^-5moles
concentration= moles / vol in liters
that is 3.95 x10^-5/100 x1000= 3.94 x10^-4M
equation for dissociation of CUCl= CUCl----> CU^+ +Cl^-
Ksp=(CU+)(CI-)
that is (3.95 x10^-4)(3.95 x10^-4)
Ksp= 1.56 x10^-7