Answer:
Let lo be the length of the rod in the frame in which it is at rest and s' is the frame which is moving with a speed 0.8c in a direction making an angle 60° with x-axis. The components of lo along and perpendicular to the direction of motion are lo cos 60° and lo sin 60° respectively.
Now length of the rod along the direction of motion
= lo cos 60°_/1-(0.8) 2/c2
= lo/2×0.6
= 0.3 lo.
Length of the rod perpendicular to the direction of motion.
= lo sin 60°
=_/3/2 lo
Length of moving rod
l = [(0.3lo)2+{lo_/3/2} 2] 1/2
= 0.916 lo.
Percentage contraction
= lo-0.916lo/lo×100
= 8.4%.
Explanation:
<h2><u><em>
Brainliest?</em></u></h2>
-- The density of the glass alone doesn't change.
-- The density of the water alone doesn't change.
-- The density of (the entire glass + everything IN IT) increases,
because the part that used to be air (with very low density) is
changed to water (with much higher density than the air had).
Answer:
1,700feet
Explanation:
If an object in free fall travels a distance s that is directly proportional to the square of the time t, this can be represented mathematically as;
S = kt²where;
k is the proportionality constant
K = s/t²
s1/t1²= s2/t2²= Sn/tn²= k for values of the distance and time. Using the formula
s1/t1² = s2/t2² where;
s1 is the falling distance in time t1 s2 is the falling distance in time t2
Given s1 = 1088feet, t1 = 8secs, s2 = ? t2 = 10secs
Substituting this value in the formula to get s2, we have;
1088/8²= s2/10²
64s2= 108800
s2 = 108800/64
s2 = 1,700feet
This means the object will fall a distance of 1,700feet in 10seconds
Answer:
Option C
Explanation:
The graph shows endothermic reaction because the reactants are lower in energy and the products are higher is energy. Endothermic reactions absorb energy having products with higher energy.
Answer: Option (c) is the correct answer.
Explanation:
When two or more small nuclei combine together to form a larger nuclei then this process is known as nuclear reaction.
The smaller is an atom, the more energy it requires to release an electron. This energy is known as binding energy.
Thus, when two small nuclei fuse together then there will be more binding energy as compared to when two large nuclei fuse together.
For example, fusion of two hydrogen atoms release more energy then one helium atom, and upon binding excess energy is released into the space.
Hence, we can conclude that energy is released in a nuclear fusion reaction based on mass-energy equivalence because for small nuclei, the binding energy of the lighter nuclei is greater than the binding energy of the heavier nucleus.