Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Answer:
(a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Explanation:
Given that,
Charge = 10.1 μC
Capacitor C₁ = 1.10 μF
Capacitor C₂ = 1.92 μF
Capacitor C₃ = 1.10 μF
Potential V₁ = 51.5 V
Let V₁ and V₂ be the potentials on the two plates of the capacitor.
(a). We need to calculate the potential on the negative plate of the 1.10 μF capacitor
Using formula of potential difference

Put the value into the formula


The potential on the second plate



(b). We need to calculate the equivalent capacitance of the two capacitors
Using formula of equivalent capacitance

Put the value into the formula



Hence, (a). The potential on the negative plate is 42.32 V.
(b). The equivalent capacitance of the two capacitors is 0.69 μF.
Answer:
False
Explanation:
No. The buoyant force on an object is the portion of its weight that appears to vanish
when the object is in any fluid (could be either a liquid or a gas).
If the object happens to float in a particular fluid, then the buoyant force at that moment
is equal to the object's weight.
Notice that the buoyant force on an object will be different in different fluids.
Answer:
0.117 m
Explanation:
First of all, we can find the wavelength of the wave in the problem, by using the wave equation:

where:
v = 350 m/s is the speed of the wave
f = 500 Hz is the frequency of the wave
is the wavelength
Solving for
,

This means that the distance between two consecutive points of the wave having a difference of phase of

is 0.7 m.
Here we want to find the distance between two points that have a difference of phase of

So, we can set up the following rule of three:

where d' is the distance we are looking for. Solving for d',

The force of friction is equal to the pushing force, and the acceleration is zero
Explanation:
In this problem, we are pushing a piano along the floor, in the horizontal direction.
There are 2 forces acting in the horizontal direction on the piano:
- The applied force,
, acting forward - The force of friction,
, acting backward
Therefore, the net force in the horizontal direction is

According to Newton's second law, the net force is equal to the product between the piano's mass (m) and its acceleration:

Combining the two equations,

However, we are also told that the piano moves at constant speed, therefore the acceleration is zero:

And so,

which means that the force of friction is equal to the applied force.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly