A heat pump is a device used to heat something, in this case water. Heat pump takes heat from colder object and transfers it to warmer object. This is opposite to <span>direction of spontaneous heat transfer which from warmer to colder object.
In this problem a room got colder while water got warmer. This is due to work done by heat pump. This is what is described in correct answer c).
a) is not correct because it shows </span>direction of spontaneous heat transfer. It also says that <span>Aleksei’s family purchased a new water heater and in description givne in a) it would mean that water got colder.
b) is not correct because if the </span><span>burning fuel increased the thermal energy in the air it would mean that this room got warmer than rest of house.
d) is not correct because burning fuel does not absorb </span><span>thermal energy. It releases it.</span>
According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:
H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.
So the law of conservation of heat tells that:
Sensible heat of Z + Sensible heat of container = Sensible heat of X
Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.
Newton's 2nd law of motion:
Force = (mass) x (acceleration)
Divide each side by (mass):
Acceleration = (force) / (mass)
= (100 N) / (50 kg)
= 2 m/s²
Alpha particles travel through the air they collide with oxygen and nitrogen molecules. While they collide with these molecules, they lose some energy until all energy are used up and they are absorbed. These particles can be absorbed by a sheet of paper or by the air. On the other hand, beta particles and gamma particles move faster than the alpha particles and are poor at ionizing atoms or molecules thus it takes more of the material to be able to absorb these particles.
Answer:
Average recoil force experienced by machine will be 200 N
Explanation:
We have give mass of each bullet m = 50 gram = 0.05 kg
There are 4 bullets
So mass of 4 bullets = 4×0.05 = 0.2 kg
Initial speed of the bullet u = 0 m/sec
And final speed of the bullet v = 1000 m/sec
So change in momentum 
Time is given per second so t = 1 sec
We know that force is equal to rate of change of momentum
So force will be equal to 
So average recoil force experienced by machine will be 200 N