Citric acid has the molecular formula C6H8O7 so you can add the molar masses of the elements from the periodic table. C has a molar mass of 12.01 g/mol, H has 1.01 g/mol and O has 15.999 g/mol. Now you calculate the total molar mass= (6*12.01 + 8*1.01 + 7*15.999). This yields a molar weight of 192.124 g/mol (anhydrous)
Answer:
Explanation:
Expression for capillary rise is as follows
h = 2T / ρ g r where T is surface tension , ρ is density of liquid and r is radius of capillary tube.
T = .032 J m⁻²
ρ = .71 g / cm³
= 7100 kg / m³
r = .1 x 10⁻³ m = 10⁻⁴ m
h = 2 x .032 / (7100 x 9.8 x 10⁻⁴ )
h = .0092 m
= 9.2 mm .
They are particular solids.
The substance has a higher density than water
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86