the compound would not be poisonous because of the properties of the two compounds
Answer:
this lesson is the third in a three-part series about the nucleus, isotopes, and radioactive decay. The first lesson, Isotopes of Pennies, deals with isotopes and atomic mass. The second lesson, Radioactive Decay: A Sweet Simulation of Half-life, introduces the idea of half-life.
By the end of the 8th grade, students should know that all matter is made up of atoms, which are far too small to see directly through a microscope. They should also understand that the atoms of any element are alike but are different from atoms of other elements. Atoms may stick together in well-defined molecules or they could be packed together in large arrays.
For students, understanding the general architecture of the atom and the roles played by the main constituents of the atom in determining the properties of materials now becomes relevant. Having learned earlier that all the atoms of an element are identical and are different from those of all other elements, students now come up against the idea that, on the contrary, atoms of the same element can differ in important ways. (Benchmarks for Science Literacy, p. 79.)
In this lesson, students will be asked to consider the case of when Frosty the Snowman met his demise (began to melt). The exercise they will go through of working backwards from measurements to age should help them understand how scientists use carbon dating to try to determine the age of fossils and other materials. To be able to do this lesson and understand the idea of half-life, students should understand ratios and the multiplication of fractions, and be somewhat comfortable with probability
Explanation:
6.02x10^23; This represents the number of molecules in 1 mole of a substance.
Answer:
The correct answer is C.) metallic bonds
Explanation:
Metallic bonds are formed between metal compounds and are very strong. These links are explained by the "sea model of electrons", where valence electrons are ceded by each metal atom, becoming positive ions forming a three-dimensional crystalline network. These electrons move forming a network ("sea") that allows the union of the positive ions formed.
A bond between 2 nonmetal atoms that have the same electronegativity and therefore have equal sharing of the bonding electron pairExample: In H-H each H atom has an electronegativity value of 2.1, therefore the covalent bond between them is considered nonpolar. Nonpolar covalent bonds, with equal sharing of the bond electrons, arise when the electronegativities of the two atoms are equal.