Answer:
E) 2.38
Explanation:
The pH of any solution , helps to determine the acidic strength of the solution ,
i.e. ,
- Lower the value of pH , higher is its acidic strength
and ,
- Higher the value of pH , lower is its acidic strength .
pH is given as the negative log of the concentration of H⁺ ions ,
hence ,
pH = - log H⁺
From the question ,
the concentration of the solution is 0.0042 M , and being it a strong acid , dissociates completely to its respective ions ,
Therefore , the concentration of H⁺ = 0.0042 M .
Hence , using the above equation , the value of pH can be calculated as follows -
pH = - log H⁺
pH = - log ( 0.0042 M )
pH = 2.38 .
The bigger the atomic radius the easier it is to oxidise the atom. Remember that an atom is oxidized by the loss of an electron.
Explanation:
The bigger the atomic radius the further away the valence electron are from the attractive force of the atomic nucleus. This means that the energy required to remove an electron from the valence shell is easier compared to an atom with a smaller atomic radius. This is because you need to overcome the attractive force of the nucleus on the electron for you to oxidize the atom.
Learn More:
For more on oxidation energy check out;
brainly.com/question/8835627
brainly.com/question/13507502
#LearnWithBrainly
Answer:
60 moles of NaF
Explanation:
The balanced equation for the reaction is given below:
Al(NO3)3 + 3NaF —> 3NaNO3 + AlF3
From the balanced equation above,
3 moles of NaF reacted to produce 1 mole of AlF3.
Therefore, Xmol of NaF will react to produce 20 moles of AlF3 i.e
Xmol of NaF = 3 x 20
Xmol of NaF = 60 moles
Therefore, 60 moles of NaF are required to produce 20 moles of AlF3.
Scientist arrange there data in coding and research.
Answer:
Electron configuration: [He] 2s²2p⁴
Explanation: