Answer:
Explanation:
Our
sample yielded 1g of
and 16g of
, but our unknown sample yielded 2 times as much
for the same amount of
.
What does this mean? that the H:O proportion for the unknown sample is twice the H:O proportion for the
sample.
What is the H:O proportion for the
sample? As we can see from its formula, it's 1:1, therefore the proportion for the unknown formula must be 2:1.
That means, two H atoms for every O atom. We could write that as:
and you should recognize that formula, for it is one of the most common compounds on earth, Water.
Answer:
Chemical energy obtained from the breakdown of food molecules.
Answer:
Copper(II) sulphate – sodium hydroxide reaction
The reaction between copper(Il) sulphate and sodium hydroxide solutions is a good place to start. If you slowly add one to the other while stirring, you will get a precipitate of copper(II) hydroxide, Cu(OH)2.
A single replacement reaction could look like this:
2FeCl3 + 3Ba ➡️ 3BaCl2 + 2Fe
In this reaction, the barium is replacing the iron bound to the chlorine.
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M