Answer:
+4
Explanation:
In PbO2, oxygen exhibits an oxidation number of -2 (since it's not a peroxide or superoxide):
Let the oxidation number of Pb be x. Then, for the compound to be neutral, the oxidation numbers of all atoms should add up to zero.
⇒ x + (−2) + (−2) = 0
x = +4
So the oxidation no. of Pb is +4.
I hope this helps.
1) Answer is: c) The reaction will proceed right.
Balanced chemical reaction: N₂(g) + 3H₂(g) ⇄ 2NH₃(g) ΔH = +92 kJ.
Reducing the volume of the system increase the partial pressures of the products and reactants.
With a pressure increase due to a decrease in volume, the side of the equilibrium with fewer moles is more favorable, there are 4 moles at the left side (three moles of hydrogen and one mole of nitrogen) and 2 moles (ammonia) at the right side of the reaction.
2) Answer is: d) The partial pressure of ammonia will increase.
This reaction is endothermic (enthalpy is higher than zero), which means that heat is added.
According to Le Chatelier's principle when the reaction is endothermic heat is included as a reactant and when the temperature increased, the heat of the system increase, so the system consume some of that heat by shifting the equilibrium to the right, producing more ammonia.
Answer: 0.000625
Explanation:
If you don't know, one Milligram is equivalent to 0.000001 Kilograms. Hence, we'll multiply 625 by 0.000001.
With that being said, 625 times 0.000001 will equal to 0.000625.
Don't forget to add the units.
Milogram unit ⇒ mg
Kilogram unit ⇒ kg
Finally, your grand answer is 0.000625.
<em>Please comment down below for any questions about my answer.</em>
<h3>
Answer</h3>
HF
<h3>Explanation</h3>
A buffer solution contains <em>a weak acid</em> and<em> its conjugate base</em>. The two species shall have a similar concentration in the solution. It's also possible for <em>a weak base</em> and <em>its conjugate acid</em> to form a buffer solution.
The KF solution already contains large number of
ions. The objective is to thus find its conjugate acid or base.
contains no proton
and is unlikely to be a conjugate acid. Assuming that
is a conjugate base. Adding one proton to
would produce its conjugate acid.

Therefore
is the conjugate acid of
.
happens to be a weak acid. As a result, combining
with
would produce a solution with large number of both the weak acid and its conjugate base, which is a buffer solution by definition.
Answer:
4.867 L of ammonia
Explanation:
Using Haber's process to form ammonia using Nitrogen and hydrogen, the equation is :
N₂ + 3H₂ → 2NH₃
Here, 3 moles of hydrogen gas gives 2 moles of ammonia.
1 mole of any substance occupies 22.4L at STP
So, 3 x 22.4L of hydrogen gives 2 x 22.4 L of ammonia
Then 7.3 L of hydrogen will give:
=
=
= 4.867 L of ammonia