C - straight line
.....................................................................................
Answer:
1350 g
Explanation: just add a 0
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Answer:
Uses nuclear reactions to produce energy
Implodes a fuel pellet
Explanation:
Laser fusion is a method of initiating nuclear fusion reactions through heating, and compressing fuel pellets containing deuterium and tritium using high energy density laser beams. Lase fusion is also known as inertial confinement fusion and the energy produced by the process is known as Laser Inertial Fusion Energy, LIFE.
During the process of laser fusion, small pellets of deuterium-tritium (DT) isotopes mixture are fed into a blast chamber where they are compressed to high densities using a number of amplified laser beams in the chamber.
The high energy density of the beams as well as the heat produced due to compression, induces the thermonuclear explosion ignition resulting in the production of high energetic products such as charged particles, x-rays and neutrons. The energy produced is absorbed and stored as heat in a blanket that is then used in a steam thermal cycle to generate electrical power.
There are two methods of compression of the DT pellet: direct and indirect-drive laser fusions.
However, there are a number of limitations to energy production by this process. One limitation is that the process is extremely inefficient in energy energy production. Also, the heat produced by the flashtubes results innthe deformation of the laser glass.
Beryllium, magnesium, strontium, barium, or radium. Hope this helped :))