Answer: 2.48×10^-17 J
Explanation:
Given the following :
Wavelength = 8nm (8 x 10^-9 m)
Energy(e) of X-ray =?
Energy=[speed of light(c) × planck's constant (h)] ÷ wavelength
Speed of light = 3×10^8m/s
Planck's constant = 6.626×10^-34 Js
Wavelength = 8 x 10^-9 m
Energy = [(3×10^8) * (6.626×10^-34)] / 8 x 10^-9
Energy = [19.878×10^(8-34)] / 8 x 10^-9
Energy = 2.48475 × 10^(-26+9)
Energy = 2.48×10^-17 J
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M
Answer:
the reactivity and the valence electrons
Explanation:
the reactivity of the elements would have played a significant role in why such elements were grouped together. the number of valence electrons dictates how reactive an element is - the less valence electrons the more reactive it is. the column, group 1 in which these elements are put together in, show that each of the elements have 1 valence electrons and are therefore reactive.
you can go on to further explain what valence electrons are, explain what the group numbers are associated with the valence electrons and how valence electrons effect reactivity. further this, talk about how the three elements have the same number of valence electrons and therefore were grouped together
In order to change celcius to kelvin always add 73 to it leaving you with -195.93
Its Homogenous Centrifuges are used to speed up the process of separating Homogeneous mixtures.