1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
15

Who reported four “element” classifications, but included some substances that were combinations of elements rather than true el

ements in his listing?
Physics
1 answer:
notsponge [240]3 years ago
7 0
Antoine-Laurent Lavoisier was the first person to report the four element classification system but also ended up including some compounds rather than elements.
You might be interested in
How does a vacuum flask keep drinks hot? Explain in terms of conduction, convection and radiation.
Flura [38]
Vacum flask has inner layer of glass and outer body of plastic.the glass has a reflective metal layer..when a hot drink is poured into the flask it prevents conduction.tight lid stops the convection.when radiation tries to leave the hot drink the reflective layer of the glass reflects it back so no heat can escape.
4 0
3 years ago
If a bullet travels at 593.0 m/s, what is its speed in miles per hour?
Ksenya-84 [330]

We have 1 \; mile = 1609.34\; meters. So, 1 \; meter = \frac{1}{1609.34} \;mile.

1 \; hour = 3600 \; s. So 1 \; s = \frac{1}{3600}  \; hour.

Thus we can convert the units of the given quantity.

That is,

593\;m/s=593\;\frac{1/1609.34}{1/3600} \;miles/hour\\
593\;m/s=1,326.51\;miles/hour.

The quantity is converted to the required units.


7 0
2 years ago
Use the following half-life graph to answer the following question:
Temka [501]

Answer:

A 1.0 min

Explanation:

The half-life of a radioisotope is defined as the time it takes for the mass of the isotope to halve compared to the initial value.

From the graph in the problem, we see that the initial mass of the isotope at time t=0 is

m_0 = 50.0 g

The half-life of the isotope is the time it takes for half the mass of the sample to decay, so it is the time t at which the mass will be halved:

m'=\frac{50.0 g}{2}=25.0 g

We see that this occurs at t = 1.0 min, so the half-life of the isotope is exactly 1.0 min.

3 0
3 years ago
A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.
Elena-2011 [213]

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

5 0
3 years ago
In some cases, neither of the two equations in the system will contain a variable with a coefficient of 1, so we must take a fur
Margaret [11]

Answer:

D = -4/7 = - 0.57

C = 17/7 = 2.43

Explanation:

We have the following two equations:

3C + 4D = 5\ --------------- eqn (1)\\2C + 5D = 2\ --------------- eqn (2)

First, we isolate C from equation (2):

2C + 5D = 2\\2C = 2 - 5D\\C = \frac{2 - 5D}{2}\ -------------- eqn(3)

using this value of C from equation (3) in equation (1):

3(\frac{2-5D}{2}) + 4D = 5\\\\\frac{6-15D}{2} + 4D = 5\\\\\frac{6-15D+8D}{2} = 5\\\\6-7D = (5)(2)\\7D = 6-10\\\\D = -\frac{4}{7}

<u>D = - 0.57</u>

Put this value in equation (3), we get:

C = \frac{2-(5)(\frac{-4}{7} )}{2}\\\\C = \frac{\frac{14+20}{7}}{2}\\\\C = \frac{34}{(7)(2)}\\\\C =  \frac{17}{7}\\

<u>C = 2.43</u>

5 0
3 years ago
Other questions:
  • What wave phenomenon is responsible for the sunlight shown in this diagram? A.)Diffraction, because light is bent around the clo
    14·2 answers
  • A baseball is dropped off the side of a cliff. It free-falls to the ground in 8 seconds. During the third second, the ball is tr
    6·2 answers
  • How can we determine the strength of a sonic boom?
    11·1 answer
  • O que levou a filosofia pensar em artes?
    10·1 answer
  • Which part of the manufacturing process involves heating and rolling blocks of steel into flat sheets and bars?
    13·1 answer
  • In science work is defined as
    7·1 answer
  • During a storm, a tree limb breaks off and comes to rest across a barbed wire fence at a point that is not in the middle between
    7·2 answers
  • consisting of an electric coil on a small paddle held over an area of the brain, __________ deactivates areas of the brain, allo
    12·1 answer
  • What would most likely happen if the decomposers were removed from the food web?
    6·1 answer
  • What two vertical forces act on a falling leaf?(1 point)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!