Answer:
its probably still trying to load ur next rank or whatever it did it to me too
Explanation:
I added individual steps for clarity. Note that g must be positive if the solution is to be real.

Let me know if you have any questions.
Answer:
The amount of work the factory worker must to stop the rolling ramp is 294 joules
Explanation:
The object rolling down the frictionless ramp has the following parameters;
The mass of the object = 10 kg
The height from which the object is rolled = 3 meters
The work done by the factory worker to stop the rolling ramp = The initial potential energy, P.E., of the ramp
Where;
The potential energy P.E. = m × g × h
m = The mass of the ramp = 10 kg
g = The acceleration due to gravity = 9.8 m/s²
h = The height from which the object rolls down = 3 m
Therefore, we have;
P.E. = 10 kg × 9.8 m/s² × 3 m = 294 Joules
The work done by the factory worker to stop the rolling ramp = P.E. = 294 joules
The coefficient of static friction between the chair and the floor is 0.67
Explanation:
Given:
Weight of the chair = 25kg
Force = 165 N (F_applied)
Force = 127 N (F_max)
To find: Coefficient of static friction
The “coefficient of static friction” between a chair and the floor is defined as the ration of maximum force to the normal force acting on the chair
μ_s=
The F_n is equal to the weight multiplied by its gravity
∴
=mg
Thus the coefficient of static friction changes as
μ_s=
μ_{s} = 
= 0.67
Answer:
when the mug is heated thus its temperature rises increasing the kinetic energy of the molecules , the oscillations around the rest position in the mug(solid) increases which increase the spaces between molecules and the mug expands. what cause the cracking is that outside of the mug expands before the inside and the mug cracks