Answer:
(a) The ratio of the pressure amplitude of the waves is 43.21
(b) The ratio of the intensities of the waves is 0.000535
Explanation:
Given;
density of gas,
= 2.27 kg/m³
density of liquid,
= 972 kg/m³
speed of sound in gas,
= 376 m/s
speed of sound in liquid,
= 1640 m/s
The of the sound wave is given by;

Where;
is the pressure amplitude

(b) when the pressure amplitudes are equal, the ratio of the intensities is given as;

Answer
given,
Pressure on the top wing = 265 m/s
speed of underneath wings = 234 m/s
mass of the airplane = 7.2 × 10³ kg
density of air = 1.29 kg/m³
using Bernoulli's equation




Applying newtons second law
2 Δ P x A - mg = 0


A = 3.53 m²
Answer:
The maximum speed will be 26.475 m/sec
Explanation:
We have given mass of the toy m = 0.50 kg
radius of the light string r = 1 m
Tension on the string T = 350 N
We have to find the maximum speed without breaking the string
For without breaking the string tension must be equal to the centripetal force
So 
So 

v = 26.475 m /sec
So the maximum speed will be 26.475 m/sec
I would say it reflects the sun easily. That’s also how we see it :)
Answer:0.69
Explanation:
Coefficient of kinetic friction=f/R=61.8/90=0.69